Answer:
Q=185.84C
Explanation:
We have to take into account the integral

In this case we have a superficial density in coordinate system.
Hence, we have for R: x2 + y2 ≤ 4

but, for symmetry:
![Q=4\int_0^2\int_0^{\sqrt{4-x^2}}\rho dydx\\\\Q=4\int_0^2\int_0^{\sqrt{4-x^2}}(4x+4y+4x^2+4y^2) dydx\\\\Q=4\int_0^{2}[4x\sqrt{4-x^2}+2(4-x^2)+4x^2\sqrt{4-x^2}+\frac{4}{3}(4-x^2)^{3/2}]dx\\\\Q=4[46.46]=185.84C](https://tex.z-dn.net/?f=Q%3D4%5Cint_0%5E2%5Cint_0%5E%7B%5Csqrt%7B4-x%5E2%7D%7D%5Crho%20dydx%5C%5C%5C%5CQ%3D4%5Cint_0%5E2%5Cint_0%5E%7B%5Csqrt%7B4-x%5E2%7D%7D%284x%2B4y%2B4x%5E2%2B4y%5E2%29%20dydx%5C%5C%5C%5CQ%3D4%5Cint_0%5E%7B2%7D%5B4x%5Csqrt%7B4-x%5E2%7D%2B2%284-x%5E2%29%2B4x%5E2%5Csqrt%7B4-x%5E2%7D%2B%5Cfrac%7B4%7D%7B3%7D%284-x%5E2%29%5E%7B3%2F2%7D%5Ddx%5C%5C%5C%5CQ%3D4%5B46.46%5D%3D185.84C)
HOPE THIS HELPS!!
:
Please give me brainly,
The thermal energy of an object depends on three things: 4 the number of molecules in the object 4 the temperature of the object (average molecular motion) 4 the arrangement of the object's molecules (states of matter). The more molecules an object has at a given temperature, the more thermal energy it has.
Answer:
2.3 Nm clockwise
Explanation:
Take counterclockwise to be positive and clockwise to be negative.
∑τ = (3 N) (2.5 m) − (7 N) (1.4 m)
∑τ = 7.5 Nm − 9.8 Nm
∑τ = -2.3 Nm
The net torque is 2.3 Nm clockwise.
To solve this problem it is necessary to apply the concepts related to acceleration due to gravity, as well as Newton's second law that describes the weight based on its mass and the acceleration of the celestial body on which it depends.
In other words the acceleration can be described as

Where
G = Gravitational Universal Constant
M = Mass of Earth
r = Radius of Earth
This equation can be differentiated with respect to the radius of change, that is


At the same time since Newton's second law we know that:

Where,
m = mass
a =Acceleration
From the previous value given for acceleration we have to

Finally to find the change in weight it is necessary to differentiate the Force with respect to the acceleration, then:




But we know that the total weight (F_W) is equivalent to 600N, and that the change during each mile in kilometers is 1.6km or 1600m therefore:


Therefore there is a weight loss of 0.3N every kilometer.
1) sound velocity reported by you : 292.39 m /s
2) time to travel 1620m at that velocity: t = d / v = 1620 m / 292.39 m/s = 5.54 s, since the moment the sound wave started.
3) You might wanted to tell the time since you watched the lightning.
Then you can calculate the time since the lighting was generated,1620 m away from you, until you saw it, using the speed of light:
speed of light = 3*10^8 m/s => t = 1620 m / (3*10^8m/s) =0.0000054 s
Then, this time is completely neglectible, and yet the answer is 5.54 s, as calculated in the step 2.