Answer:
Rolling friction is much smaller than sliding friction because Rolling friction is considerably less than sliding friction as there is no work done against the body that is rolling by the force of friction. For a body to start rolling a small amount of friction is required at the point where it rests on the other surface, else it would slide instead of roll.
Rolling Friction example: Anything with weels (cars,skateboards) or a ball rooling.
Sliding Friction example: Bicycle brakes,skinning your knee walking,writing.
Answer: 0.1 m/s
Explanation:
Use formula,
v = f * w where, v is speed, f is frequency and w is wavelength.
Now,
v = 2 * 5 * 10 ^ -2 ( Remember to convert all the units to SI units. Here 5 cm becomes 5 * 10 ^ -2 m. )
v = 0.1 m/s.
I only know #2 and #4.
2.) cells
3.) cells, life , existing
Sorry that i dont know the rest but i took a test on this not to long ago, and i tend to forget stuff once i take a test on it.
Answer:
10.2 m
Explanation:
The position of the dark fringes (destructive interference) formed on a distant screen in the interference pattern produced by diffraction from a single slit are given by the formula:

where
y is the position of the m-th minimum
m is the order of the minimum
D is the distance of the screen from the slit
d is the width of the slit
is the wavelength of the light used
In this problem we have:
is the wavelength of the light
is the width of the slit
m = 13 is the order of the minimum
is the distance of the 13th dark fringe from the central maximum
Solving for D, we find the distance of the screen from the slit:
