Answer:
We first to know that if the wheel rotates from rest means that at t=0 the velocity and the angle rotated is 0.
Then, we know:

Integrating 2 times, we have:

For the first 27.9 s, we have:
w = 37.107 rad/s
angle = 517.6426 rad
For the next seconds, according to the text, the angular velocity is constant so
w = 37.107 rad/s and hence, integrating:

Then, the time remaining is:
53.5 - 27.9 = 25.6
So for the next 25.6 seconds we have:

Finally, we add the 2 angles and we have as a result:

Answer:
Electrons are influenced by internal forces.
-On the temperature, density of electrons per unit of volume and relaxation time.
-The temperature
Explanation:
The Drude model neglects interactions between electrons and ions and with themselves. Those interactions (by which we refer as electromagnetic forces) influence in the random movement and freedom of the electron. So, they could be more restricted or could influence in conductivity more.
The deduction of the resistivity comes from the Ohm's law, which states that the Electric field in the material is proportional to the current density of electrons by a constant, which is the resistivity itself. The equation goes as follows:

Where e refers to electron (or the charge of it), τ is the relaxation time (average time between collisions), m is the mass and n is the density of charges (electrons in this case) per volume. However, experimentally resistivity is also dependent on temperature, which actually influence the relaxation time. The thermal energy influence in the behavior of the electrons, making them collide with phonons, have more randomness and reduced mean free path.
912.
outer ear:
pinna
ear canal
middle ear:
ossicles and ear drum
inner ear:
semcircular canals
cochlea
auditory nerve
13.
frequency = wavespeed ÷ wavelength
14.
if frequency increases you would experience a higher pitch in sound
15.
humans can hear 20Hz to 20kHz
16.
The Doppler effect is the change in frequency or wavelength of a wave for an observer who is moving relative to the wave source. Can be used for machines measuring speed via doppler effect.
17.
Doppler in hospitals can be used for ultrasound to provide images for diagnosis and monitoring.