The Law of conservation of mass states that option C: matter is neither created nor destroyed.
<h3>What is the law of conservation of matter?</h3>
Physical and chemical changes can cause matter to transform into different forms, but no matter what happens, matter is always conserved. There is no creation or destruction of matter; the amount of matter is the same before and after the transformation.
The principle of matter conservation. argues that matter cannot be generated or destroyed during a chemical reaction. The same number of atoms exist before and after the alterations even though the matter may shift from one form to another. reactant.
Therefore, According to the principle of mass conservation, neither chemical processes nor physical changes can create or destroy mass in an isolated system. The mass of the products and reactants of a chemical reaction must be equal, in accordance with the law of conservation of mass.
Learn more about matter from
brainly.com/question/3998772
#SPJ1
See full question below
1. Multiple-choice
Q.
Conservation of matter article questions
Law of conservation of mass states that
answer choices
matter is created
matter is destroyed
matter is neither created nor destroyed
matter does not change
<span>a. It melts at 1455oC I know this is correct I need One more</span>
Answer:
the answer is a
Explanation:
i did process of elimination and i got a
Answer:
The most stable conformer would be the anti-conformer when the substituent methyl groups are farthest away from each other.
Explanation:
Isomers are chemical compounds with the same molecular formula but with different molecular structures.
Conformers are a special type of isomers that produce different structures when the substituents of a Carbon-Carbon single bond (C-C) are rotated.
In 2,3 dimethyl butane, the substituent methyl groups are located around the second and third Carbon to Carbon single bond.
To achieve a stable configuration, the methyl group substituents need to be as far apart as possible (that is, in an anti-position) to minimise repulsion.
The closer the methyl groups are to each other, the more they repel each other and the more unstable the conformer becomes.