The chemical equation without coefficients is:
Ca + CO2 + O2 --------> Ca CO3
You can balance that equation by trial an error.
This is the chemical equation balanced:
2Ca + 2CO2 + O2 --------> 2Ca CO3
Count the atoms on each side to check the balance
Atom Left side right side
Ca 2 2
C 2 2
O 2*2 + 2 = 6 2*3 = 6
Then those are the coefficients:
a0 = 2
a1 = 2
a2 = 1
a3 = 2
2H2O+O2--->2H2O2
8.5 gm H2O2=0.25 mole
hence H2O is also 0.25 mole i.e.4.5 gm
O2is 0.125 mole i.e.4 gm
The principal quantum number, <span>nn</span>, designates the principal electron shell. Because n describes the most probable distance of the electrons from the nucleus, the larger the number n is, the farther the electron is from the nucleus, the larger the size of the orbital, and the larger the atom is. n can be any positive integer starting at 1, as <span><span>n=1</span><span>n=1</span></span> designates the first principal shell (the innermost shell). The first principal shell is also called the ground state, or lowest energy state. This explains why <span>nn</span> can not be 0 or any negative integer, because there exists no atoms with zero or a negative amount of energy levels/principal shells. When an electron is in an excited state or it gains energy, it may jump to the second principle shell, where <span><span>n=2</span><span>n=2</span></span>. This is called absorption because the electron is "absorbing" photons, or energy. Known as emission, electrons can also "emit" energy as they jump to lower principle shells, where n decreases by whole numbers. As the energy of the electron increases, so does the principal quantum number, e.g., n = 3 indicates the third principal shell, n = 4 indicates the fourth principal shell, and so on.
The kinetic energy of gas particles depends on temperature. Greater the temperature higher will be the average kinetic energy
Kinetic energy is related to the temperature as:
KE = 3/2 kT
where k = Boltzmann constant
T = temperature
In the given example, since the temperature of O2 gas is maintained at room temperature, the average KE will also remain constant.
The fifth postulate of the kinetic molecular theory which states that the temperature of the gas depends on the average KE of the particles of the gas explains the above observation.