0.3147 concentration (in moles/l) of a saline (NaCl) solution will provide an isotonic eyedrop solution.
Isotonic eye drops
Because it might result in eye discomfort or tissue damage if it is not maintained, isotonicity is regarded as a crucial component of ophthalmic medicines. A few drops of blood are mixed with the test preparation before being examined and judged under a microscope at a magnification of 40. Isotonic solutions are those that have the same amount of water and other solutes in them as the cytoplasm of a cell. Since there is no net gain or loss of water, placing cells in an isotonic solution will not cause them to either shrink or swell.
We can calculate the osmotic pressure exerted by a solution using the following expression.
π = M . R . T
where,
π is the osmotic pressure
M is the molar concentration of the solution
R is the ideal gas constant
T is the absolute temperature
The absolute temperature is 37 + 273 = 310 K
π = M . R . T
8 = (X mol/L) . (0.082atm.L/mol.K) . 310 K = 0.3147 mol/L
To learn more about osmotic pressure refer:
brainly.com/question/5041899
#SPJ4
55= No (1/2)^55/57
55= No (1/2)^3.9
55= No (1/2)^4
55= No (1/16)
No= 880 g
The correct answer is 1atm.
<h3>
What is Kinetic theory of gases?</h3>
A lot of the fundamental ideas of thermodynamics were established with the help of the kinetic theory of gases, a straightforward yet historically significant classical model of the thermodynamic behaviour of gases. According to the model, a gas is made up of numerous identical submicroscopic particles (atoms or molecules) that are all moving rapidly and randomly. It is considered that they are substantially smaller in size than the particle spacing on average. Random elastic collisions between the particles and with the container's walls occur between the particles. The simplest form of the model only takes into account the interactions within the ideal gas.
learn more about Kinetic theory of gases refer:
brainly.com/question/3924326
#SPJ4
Answer:
The Earth's surface is constantly changing through forces in nature. The daily processes of precipitation, wind and land movement result in changes to landforms over a long period of time. Driving forces include erosion, volcanoes and earthquakes. People also contribute to changes in the appearance of land.