Answer:
The method is accurate in the calculation of the 
Explanation:
As a first step we have to calculate the <u>average concentration </u>of
find it by the method.

Then we have to find the<u> standard deviation:</u>

For the confidence interval we have to use the formula:
μ=Average±
Where:
t=t student constant with 95 % of confidence and 5 data=2.78
μ=
± 
upper limit: 0.84
lower limit: 0.75
If we compare the limits of the value obtanied by the method (Figure 1 Red line) with the reference material (Figure 1 blue line) we can see that the values obtained by the method are within the values suggested by the reference material. So, it's method is accurate.
Products develop much faster than regular reactants
The Alkali Metals- (Group 1A)can be found (excluding hydrogen) in the first column of the periodic table. They all have 1 valence electron and tend to form +1 cations when forming Ionic bonds with non metals.
The Alkali Earth Metals: (Group 2A) can be found in the second column/group on the periodic table. These elements form +2 positively charged cations when forming Ionic bonds with non metals. They also all have 2 valence electrons.
The Halogens: are the elements that make up the second to last group on the periodic table. These elements include Chlorine, Fluorine, Bromine, Iodine, and Astatine. These elements have 7 valence electrons. The usually form a -1 charged anion when forming ionic bonds with metals.
The Noble gases: the very last group on the periodic table. All these elements have 8 valance electrons. Due to the octet rule these atoms are already very stable and rarely react with other elements.
Answer:
because u need one more assianment before it becomes 100
Explanation:
Phosphorus I think not so sure