Answer:
Magnesium is the most reactive element. it is higher than the other elements (Fe, Pb, Zn) in the electrochemical series
Answer:
Theoretical yield of C6H10 = 3.2 g.
Explanation:
Defining Theoretical yield as the quantity of product obtained from the complete conversion of the limiting reactant in a chemical reaction. It can be expressed as grams or moles.
Equation of the reaction
C6H11OH --> C6H10 + H2O
Moles of C6H11OH:
Molar mass of C6H110H = (12*6) + (1*12) + 16
= 100 g/mol
Mass of C6H10 = 3.8 g
number of moles = mass/molar mass
=3.8/100
= 0.038 mol.
Using stoichoimetry, 1 moles of C6H110H was dehydrated to form 1 mole of C6H10 and 1 mole of water.
Therefore, 0.038 moles of C6H10 was produced.
Mass of C6H10 = molar mass * number of moles
Molar mass of C6H10 = (12*6) + (1*10)
= 82 g/mol.
Mass = 82 * 0.038
= 3.116 g of C6H10.
Theoretical yield of C6H10 = 3.2 g
Answer:
Overall reaction equation;
2NO(g) +Cl2(g) -----> 2NOCl (g)
Explanation:
Given
1) NO(g) + Cl2(g) → NOCl2(g)
2) NOCl2(g) + NO(g) → 2NOCl(g)
Overall reaction equation;
2NO(g) +Cl2(g) -----> 2NOCl (g)
k1= [NOCl2]
k-1= [NO] [Cl2]
k2 = [NOCl2] [NO]
Equilibrium for the first equation (reaction 1)
K= k1/k-1 = [NOCl2]/[NO] [Cl2]
Therefore
[NOCl2] = k1/k-1 [NO] [Cl2]
Rate= k2× k1/k-1 [NO]^2 [Cl2]
Rate = Koverall [NO]^2 [Cl2]
Where Koverall= k1k2/k-1
Answer:
By contrast, the red blood cells of mammals lack nuclei and other internal structures found in most animal cells. This simplification allows mammal red blood cells to carry more gas-transporting proteins and to squeeze through smaller blood vessels.
Explanation:
Answer:
give us something else to work with or this is just the best guess