En este problema simplemente tenemos que usar la suma de fracciones.
Veremos que entre ambos tienen un frasco entero de miel.
Sabemos que Clauida tiene 3/6 de un frasco de miel, y el hermano tiene 9/18 de un frasco de miel.
En total, entre ambos, tienen:
3/6 + 9/18
Para poder realizar esta suma tenemos que tener el mismo denominador en ambas fracciones, asi que podemos simplificar.
en 9/18 si dividimos numerador y denominador por 9 obtenemos:
9/18 = 1/2
en 3/6 si dividimos numerador y denominador por 3 obtenemos:
3/6 = 1/2
Así:
3/6 + 9/18 = 1/2 + 1/2 = 1
Entre ambos tienen un frasco entero de miel.
Sí quieres aprender más, puedes leer.
brainly.com/question/19527206
the coordinates of endpoint B are (7,7)
Answer:
Solution given:
M(x,y)=(2,-1)
A
Let
B
now
by using mid point formula
x=
$ubstituting value
2*2=-3+a
a=4+3
a=7
again
y=
$ubstituting value
-1*2=5-b
b=5+2
b=7
the coordinates of endpoint B are (7,7)
I don’t think you’re wrong good job
Answer:
The expressions which equivalent to are:
⇒ B
⇒ C
Step-by-step explanation:
Let us revise some rules of exponent
Now let us find the equivalent expressions of
A.
∵ 4 = 2 × 2
∴ 4 =
∴ =
- By using the second rule above multiply 2 and (n + 2)
∵ 2(n + 2) = 2n + 4
∴ =
B.
∵ 4 = 2 × 2
∴ 4 = 2²
∴ = 2² ×
- By using the first rule rule add the exponents of 2
∵ 2 + n + 1 = n + 3
∴ =
C.
∵ 8 = 2 × 2 × 2
∴ 8 = 2³
∴ = 2³ ×
- By using the first rule rule add the exponents of 2
∵ 3 + n = n + 3
∴ =
D.
∵ 16 = 2 × 2 × 2 × 2
∴ 16 =
∴ = ×
- By using the first rule rule add the exponents of 2
∵ 4 + n = n + 4
∴ =
E.
is in its simplest form
The expressions which equivalent to are:
⇒ B
⇒ C
Using Lagrange multipliers, we have the Lagrangian
with partial derivatives (set equal to 0)
Substituting the first three equations into the fourth allows us to solve for
:
For each possible value of
, we get two corresponding critical points at
.
At these points, respectively, we get a maximum value of
and a minimum value of
.