1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hichkok12 [17]
2 years ago
8

Select the correct answer

Physics
1 answer:
Nadya [2.5K]2 years ago
7 0

Answer:

f= 3.0 \times 10 {}^{8} \div 7.0 \times 10 {}^{7} \\ f = 4.28hz

Given

You might be interested in
For Jane to see an image, light must enter her eyes. What specifically is entering her eyes when she sees an image?
Sergio [31]
Energy
because once the light hits her eyes energy flows through her body so the answer is A energy
3 0
3 years ago
Read 2 more answers
ANYONE who is good with the consequences of Population growth PLEASE help me!!
alekssr [168]

in china, there is a family limit for only having 1 child

at 10 billion people on earth, we will most likely run out of food supply

4 0
3 years ago
Read 2 more answers
three condensers are connected in series across a 150 volt supply. The voltages across them are 40,50 and 60 volts respectively,
ioda

Explanation:

Given that,

The voltages across them are 40,50 and 60 volts respectively, and the charge on each condenser is 6×10⁻⁸ C.

(a) Capacitance of capacitor 1,

C_1=\dfrac{Q}{V_1}\\\\C_1=\dfrac{6\times 10^{-8}}{40}\\\\C_1=1.5\times 10^{-9}\ F\\\\C_1=1.5\ nF

Capacitance of capacitor 2,

C_2=\dfrac{Q}{V_2}\\\\C_2=\dfrac{6\times 10^{-8}}{50}\\\\C_2=1.2\times 10^{-9}\ F\\\\C_2=1.2\ nF

Capacitance of capacitor 3,

C_3=\dfrac{Q}{V_3}\\\\C_3=\dfrac{6\times 10^{-8}}{60}\\\\C_3=1\times 10^{-9}\ F\\\\C_3=1\ nF

(b) The equivalent capacitance in series combination is :

\dfrac{1}{C}=\dfrac{1}{C_1}+\dfrac{1}{C_2}+\dfrac{1}{C_3}\\\\\dfrac{1}{C}=\dfrac{1}{1.5}+\dfrac{1}{1.2}+\dfrac{1}{1}\\\\C=0.4\ nF

Hence, this is the required solution.

5 0
3 years ago
The 1.53-kg uniform slender bar rotates freely about a horizontal axis through O. The system is released from rest when it is in
OlgaM077 [116]

Answer:

The spring constant = 104.82 N/m

The angular velocity of the bar when θ = 32° is 1.70 rad/s

Explanation:

From the diagram attached below; we use the conservation of energy to determine the spring constant by using to formula:

T_1+V_1=T_2+V_2

0+0 = \frac{1}{2} k \delta^2 - \frac{mg (a+b) sin \ \theta }{2}  \\ \\ k \delta^2 = mg (a+b) sin \ \theta \\ \\ k = \frac{mg(a+b) sin \ \theta }{\delta^2}

Also;

\delta = \sqrt{h^2 +a^2 +2ah sin \ \theta} - \sqrt{h^2 +a^2}

Thus;

k = \frac{mg(a+b) sin \ \theta }{( \sqrt{h^2 +a^2 +2ah sin \ \theta} - \sqrt{h^2 +a^2})^2}

where;

\delta = deflection in the spring

k = spring constant

b = remaining length in the rod

m = mass of the slender bar

g = acceleration due to gravity

k = \frac{(1.53*9.8)(0.6+0.2) sin \ 64 }{( \sqrt{0.6^2 +0.6^2 +2*0.6*0.6 sin \ 64} - \sqrt{0.6^2 +0.6^2})^2}

k = 104.82\ \  N/m

Thus; the spring constant = 104.82 N/m

b

The angular velocity can be calculated by also using the conservation of energy;

T_1+V_1 = T_3 +V_3  \\ \\ 0+0 = \frac{1}{2}I_o \omega_3^2+\frac{1}{2}k \delta^2 - \frac{mg(a+b)sin \theta }{2} \\ \\ \frac{1}{2} \frac{m(a+b)^2}{3}  \omega_3^2 +  \frac{1}{2} k \delta^2 - \frac{mg(a+b)sin \ \theta }{2} =0

\frac{m(a+b)^2}{3} \omega_3^2  + k(\sqrt{h^2+a^2+2ah sin \theta } - \sqrt{h^2+a^2})^2 - mg(a+b)sin \theta = 0

\frac{1.53(0.6+0.6)^2}{3} \omega_3^2  + 104.82(\sqrt{0.6^2+0.6^2+2(0.6*0.6) sin 32 } - \sqrt{0.6^2+0.6^2})^2 - (1.53*9.81)(0.6+0.2)sin \ 32 = 0

0.7344 \omega_3^2 = 2.128

\omega _3 = \sqrt{\frac{2.128}{0.7344} }

\omega _3 =1.70 \ rad/s

Thus, the angular velocity of the bar when θ = 32° is 1.70 rad/s

7 0
3 years ago
Describe what the effect of increasing the power of a camera would have on the battery life
patriot [66]

Answer:

. Cut Down on the LCD

The biggest battery drain in a camera is the LCD – both the rear screen and the electronic viewfinder. This is the big reason why DSLRs almost always have longer battery life specifications than mirrorless cameras – the optical viewfinder lets you skip LCDs altogether.

However, if you use your DSLR in live view, you’ll notice that its battery life slides dramatically. Side by side against a mirrorless camera, there’s actually a good chance it will die first. LCDs just take a lot of power to run.

What does this imply? Quite simply, you should always do what you can to cut down on LCD usage when your battery is running low.

For DSLR users, that means switching to the optical viewfinder. For mirrorless photographers, it means turning off the camera frequently, or setting it so the viewfinder only activates when you hold it to your eye.

And regardless of the camera you use, drastically cut down on the amount of time you spend reviewing photos. Chimping has its place, but not while your battery warning is blinking red.Optimize Your Battery Saver Settings

Most cameras have menu options designed to improve battery life and maximize your shooting time. For example, the “metering timeout” setting lets you select how long you want the camera to wait during inactivity before shutting off its metering system.

Beyond that, a number of cameras today have an “Eco mode” that minimizes power consumption from the camera’s LCD. On the Canon EOS R, for example, Eco mode dims and then turns off the LCD when not in use, improving your battery life significantly – from 370 to 540 shots per charge, according to Canon’s official specifications.

It’s also important to note that mirrorless cameras are generally more efficient using the rear LCD than the electronic viewfinder. In terms of the EOS R again, Canon only rates 350 shots using the EVF, with no Eco mode to improve it. On the Sony side of things, the new A7R IV is rated for 530 shots via the viewfinder and 670 via the rear LCD.

If none of that applies to you, one option at your disposal is always to lower the brightness of your rear LCD. It might make photography a bit trickier in bright conditions, but the payoff is getting the shot rather than missing it completely due to a dead battery.

Other camera settings and extras that harm battery life include:

Image stabilization (both in-body and in-lens)

Popup flash

Bluetooth and WiFi

Most external accessories: GPS dongles, lightning triggers, wireless remote releases, shotgun mics, etc.

Sometimes, these capabilities are essential for your photo, so it’s worth the battery life sacrifice. But if you’re down to your last bar, double check to ensure that you’re not using any of the above settings or accessories without good reason.

8 0
3 years ago
Other questions:
  • a 59kg physics student jumps off the back of her laser sailboat (42kg). after she jumps the laser is found to be travelling at 1
    12·1 answer
  • A truck is traveling north and a car is traveling west calculate momentum
    10·1 answer
  • 7. Choose the correct reaction type for the following.<br> 2KCl → 2K+ Cl2
    9·1 answer
  • man stands on a platform that is rotating (without friction) with an angular speed of 1.2 rev/s; his arms are outstretched and h
    15·1 answer
  • Two basketballs of equal mass are rolling toward each other at constant velocities. The first basketball (B1) has a velocity of
    6·1 answer
  • Colossal Cave was formed years ago by underground running water. Today, it is the home to many animals, like bats. These interac
    7·1 answer
  • 3. If there is an atomic mass of 47
    6·1 answer
  • Which organelle is unique to plants and captures light energy for photosynthesis?
    10·2 answers
  • If a capital letter R is seen in an ordinary mirror , what does it look like?
    15·2 answers
  • 4. What is the coefficient of x in the expression x + 3y + 2?<br> A. 0<br> B. 1<br> C. 2<br> D. 3
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!