Answer:the first one was x
the second one is y
Explanation:
Answer:
vb = 22.13 m/s
Explanation:
ma = 124 kg
mb = 13 kg
vi = 2.10 m/s
According to the property of conservation of momentum, and considering that, initially, both the astronaut and the bag moved together at 2.10 m/s:
The minimum final velocity of the bag, vb, the will keep the astronaut from drifting away forever occurs when va = 0:
The minimum final velocity of the bag is 22.13 m/s.
Answer:
0.14
Explanation:
Flow rate is the volume flowing through a point at a particular time, in calcuing flow rate we have
Q= v*t
it in terms of Area, we have Q= A*v
Where A= area
v= velocity.
Solving the question , flow rate is constant then
A*v= constant
A(i) v(i)= A(f) v(f)
Where A(i)= initial area= 1.00cm^2
A(f)= final area= 0.400cm^2
V(i) and V(f) are the initial and final velocity respectively and the ratio of the two will gives us the factor
Substitute the values into the equation we have
1 V(i)= 4 V(f)
But we were told that the cross sectional area of 1.00cm^2 branches into 18 smaller arteries.
Then
1 V(i)=0.4 V(f)*(18)
1 V(i)=7.2V(f)
Then if we find the ratio of the velocity, we will get the factor.
V(f)/V(i)= 1/7.2
V(f)/V(i)=0.14
Hence, the factor of the average velocity of the blood reduced when it passes into these branches is 0.14
This is what I found online: "<span>For a person with normal hearing, when it comes to pitch the human hearing range starts low at about 20 Hz. That’s about the same as the lowest pedal on a pipe organ. On the other side of the human hearing range, the highest possible frequency heard without discomfort is 20,000Hz. While 20 to 20,000Hz forms the absolute borders of the human hearing range, </span>our hearing is most sensitive in the 2000 - 5000 Hz frequency range<span>." So i'm guessing it's 100,00 since none of those are lower than 20
</span>