X=y+3
<span>-5x-4y=<span>30
-------------------
Substitute y + 3 for x in </span></span>-5x-4y=30
<span><span>-5<span>(y+3)-</span></span>4y</span>=<span>30
</span>-9y-15=<span>30
</span>----------------------------
Add 15 to each side
<span><span>-9y-15</span>+15</span>=<span>30+<span>15
-9y = 45
</span></span>-----------------------------------
Divide each side by -9
-9y ÷ -9 = 45 ÷ -9
y = -5
Now we solve for x
====================================================================
Substitute -5 for y in x = y + 3
x=-<span><span>5</span>+<span>3
</span></span>x = -2
----------------------
(-2,-5) is your answer
Answer:
-7 (7x^2-y^2-19)
Step-by-step explanation:
Answer:
6 rides
Step-by-step explanation:
3r+5<25
3r<20
r<6.67
rides=6
check answer
3r+5<25
3(6)+5<25
18+5<25
23<25
Answer:
210 cm²
Step-by-step explanation:
The net of the right trapezoidal prism consists of 2 trapezoid base and four rectangles.
Surface area of the trapezoidal prism = 2(area of trapezoid base) + area of the 4 rectangles
✔️Area of the 2 trapezoid bases:
Area = 2(½(a + b)×h)
Where,
a = 7 cm
b = 11 cm
h = 3 cm
Plug in the values
Area = 2(½(7 + 11)×3)
= (18 × 3)
Area of the 2 trapezoid bases = 54 cm²
✔️Area of Rectangle 1:
Length = 6 cm
Width = 3 cm
Area = 6 × 3 = 18 cm²
✔️Area of Rectangle 2:
Length = 7 cm
Width = 6 cm
Area = 7 × 6 = 42 cm²
✔️Area of Rectangle 3:
Length = 6 cm
Width = 5 cm
Area = 6 × 5 = 30 cm²
✔️Area of Rectangle 4:
Length = 11 cm
Width = 6 cm
Area = 11 × 6 = 66 cm²
✅Surface area of the trapezoidal prism = 54 + 18 + 42 + 30 + 66 = 210 cm²
Answer:
It is correct!!
Step-by-step explanation: