Answer:
900 m ( 0.9 km)
Explanation:
from the question we have the following
first person's height (h) = 100 m above the earths surface
distance to the horizon that can be seen (s) = 15 km = 15,000 m
second person's height (h1) = 36 m
distance to the horizon that can be seen (s1) = ?
take note that the distance (s) a person can see = square root of the person's height
s =
x K
where k is a constant
from the height and the distance the first person can see we can get the value of K
15000 =
x K
15000 = 10 x K
K = 150
now putting the value of K and the height of the second person into the equation we can get the distance into the horizon the person can see
s =
x 150
s = 900 m
therefore the second person who is 36 m above the surface can see 900 m ( 0.9 km) into the horizon
Answer: 2.74
Explanation:
We can solve this problem using the stopping distance formula:

Where:
is the distance traveled by the car before it stops
is the car's initial velocity
is the coefficient of friction between the road and the tires
is the acceleration due gravity
Isolating
:

Solving:

This is the coefficient of friction
<span>The crystals that form in slowly cooling magma are generally large. </span>
Answer:
V = 156.85 Km/h
Explanation:
Speed of plane = 125 Km/h
angle of plane= 25° N of E
Speed of wind = 36 Km/h
angle of plane = 6° S of W
Horizontal component of the velocity
V_x = 125 cos 25° + 36 cos 6°
V_x = 149 Km/h
Vertical component of the velocity
V_y = 125 sin 25° - 36 sin 6°
V_y = 49 Km/h
Resultant of Velocity


V = 156.85 Km/h
the resulting velocity of the plane is equal to V = 156.85 Km/h
Answer:
Actually, surface tension is the to force per unit length. That means formula for surface tension is = force/length . As we know that the dimensional formula for length is L . And that for force is MLT^-2. So the dimensional formula for surface tension can be obtained by dividing the dimensional formula of force and length.
Explanation: