The question isn't clear enough, I think it ask us to calculate the linear speed of a point at the edge of the DVD.
Now let's imagine we're a point at the edge of the DVD, we're undergoing a circular motion. Each minute we will complete a circular track 7200 times, now we need to know the distance we travel each turn. The perimeter of the DVD, a circular object is:

Know recall that:

We now need to know how much distance is traveled during a minute or 60 seconds:

Finally we divide this result with t=60 seconds:


Where the distance units were named units as the length unit is not specified in this exercise.<span />
Answer:
The answer is C.
Explanation:
An ion is unlike a neutral atom in the fact that it has a charge. Because electrons are negatively charged, an atom becomes more positive if electrons are lost.
Answer:
1. They both uses same energy
2. The 6 kg ball requires more power than 3kg ball
Explanation:
Sample 1
m = 3kg
g= 10m/s^2
h = 2m
t = 2secs
W = mgh = 3 x 10 x 2 = 60J
P= w/t = 60/2 = 30watts
Sample 2
m = 6kg
g= 10m/s^2
h = 1m
t = 1sec
W = mgh = 6 x 10 x 1 = 60J
P= w/t = 60/1 = 60watts
They both uses same energy but different power. The 6 kg ball requires more power than 3kg ball
Answer:
a) 1.3 rad/s
b) 0.722 s
Explanation:
Given
Initial velocity, ω = 0 rad/s
Angular acceleration of the wheel, α = 1.8 rad/s²
using equations of angular motion, we have
θ2 - θ1 = ω(0)[t2 - t1] + 1/2α(t2 - t1)²
where
θ2 - θ1 = 53.2 rad
t2 - t1 = 7s
substituting these in the equation, we have
θ2 - θ1 = ω(0)[t2 - t1] + 1/2α(t2 - t1)²
53.2 =ω(0) * 7 + 1/2 * 1.8 * 7²
53.2 = 7.ω(0) + 1/2 * 1.8 * 49
53.2 = 7.ω(0) + 44.1
7.ω(0) = 53.2 - 44.1
ω(0) = 9.1 / 7
ω(0) = 1.3 rad/s
Using another of the equations of angular motion, we have
ω(0) = ω(i) + α*t1
1.3 = 0 + 1.8 * t1
1.3 = 1.8 * t1
t1 = 1.3/1.8
t1 = 0.722 s
Answer:
You should have noticed that the number of atoms in the reactants is the same as the number of atoms in the product. The number of atoms is conserved during the reaction. However, you will also see that the number of molecules in the reactants and products are not the same.