<h3><u>Full Question:</u></h3>
The following compound has been found effective in treating pain and inflammation (J. Med. Chem. 2007, 4222). Which sequence correctly ranks each carbonyl group in order of increasing reactivity toward nucleophilic addition?
A) 1 < 2 < 3
B) 2 < 3 < 1
C) 3 < 1 < 2
D) 1 < 3 < 2
<h3><u>Answer: </u></h3>
The rate of nucleophilic attack of carbonyl compounds is 2<3 <1.
Option B
<h3><u>Explanation. </u></h3>
Nucleophilic attack is explained as the attack of an electron rich radical to a carbonyl compound like aldehyde or a ketone. A nucleophile has a high electron density, so it searches for a electropositive atom where it can donate a portion of its electron density and become stable.
A carbonyl compound is a
hybridized carbon atom with a double bonded oxygen atom in it. The oxygen atom pulls a huge portion of electron density from carbon being very electropositive.
In a ketone, there are two factors that make it less likely to undergo a nucleophilic attack than aldehyde. Firstly, the steric hindrance of two carbon groups being attached with the carbonyl carbon makes it harder for the nucleophile to approach. Secondly, the electron push by the carbon groups attached makes the carbonyl carbon a bit less electropositive than the aldehyde one. So aldehydes are more reactive towards a nucleophilic addition reaction.
Answer:
The fraction of water body necessary to keep the temperature constant is 0,0051.
Explanation:
Heat:
Q= heat (unknown)
m= mass (unknown)
Ce= especific heat (1 cal/g*°C)
ΔT= variation of temperature (2.75 °C)
Latent heat:
ΔE= latent heat
m= mass (unknown)
∝= mass fraction (unknown)
ΔHvap= enthalpy of vaporization (539.4 cal/g)
Since Q and E are equal, we can match both equations:

Mass fraction is:


∝=0,0051
Answer:
Pure Substances are made of the same material throughout and have the same properties throughout. Pure substances cannot be separated into other substances. Some examples are carbon, iron, water, sugar, salt, nitrogen gas, and oxygen gas. ... If so, you have a pure substance.
Hope this helps!!
Can I be Brainliest? ☺
Answer:
1) Se2O5
2) I2O6
3)Zn3n2
4) Cr(HCO3)3
Explanation:
selenium pentaoxide (= also called diselenium pentoxide)
= Se2O5
⇒ Se = 78.97 g/mol
⇒ O = 16 g/mol
⇒ 2*78.97 + 5*16 = 237.94 g/mol
iodine trichloride
= I2O6
⇒ I = 126.9 g/mol
⇒ Cl = 35.45 g/mol
⇒ 2* 126.9 + 6 * 35.45 = 466.5 g/mol
zinc (1) nitride does not exist (it's Zinc(ii)nitride
The oxidation number for zinc is always 2
Zn3n2
⇒ Zn = 65.38 g/mol
⇒ N = 14 g/mol
⇒3*65.38 + 2* 14 = 224.14 g/mol
chromium (III) bicarbonate
Cr(HCO3)3
⇒ Cr = 52 g/mol
⇒ H = 1.01 g/mol
⇒ C = 12 g/mol
⇒ O = 16 g/mol
52 + 3*1.01 + 3*12 + 6*16 = 235.03 g/mol