5. B air is a mixture of many elements, but is not a chemically fused.
6. B Beef stew, composition varies throughout.
7. A. They can be chemically separated into their component elements, but they are all homogenous, and as such, have constant composition, which differs from the components properties, as the components must undergo a chemical change to become compounds.
Specific heat capacity is the required amount of heat per unit of mass in order to raise teh temperature by one degree Celsius. It can be calculated from this equation: H = mCΔT where the H is heat required, m is mass of the substance, ΔT is the change in temperature, and C is the specific heat capacity.
H = m<span>CΔT
2501.0 = 0.158 (C) (61.0 - 32.0)
C = 545.8 J/kg</span>·°C
Answer:
longitudinal
Explanation:
A prime meridian is the meridian (a line of longitude) in a geographic coordinate system at which longitude is defined to be 0°. Together, a prime meridian and its anti-meridian (the 180th meridian in a 360°-system) form a great circle. This great circle divides a spheroid into two hemispheres.
Answer:

Explanation:
Hess's Law of Constant Heat Summation states that if a chemical equation can be written as the sum of several other chemical equations, the enthalpy change of the first chemical equation is equal to the sum of the enthalpy changes of the other chemical equations. Thus, the reaction that involves the conversion of reactant A to B, for example, has the same enthalpy change even if you convert A to C, before converting it to B. Regardless of how many steps it takes for the reactant to be converted to the product, the enthalpy change of the overall reaction is constant.
With Hess's Law in mind, let's see how A can be converted to 2C +E.
(Δ
) -----(1)
Since we have 2B, multiply the whole of II. by 2:
(2Δ
) -----(2)
This step converts all the B intermediates to 2C +2D. This means that the overall reaction at this stage is
.
Reversing III. gives us a negative enthalpy change as such:
(-Δ
) -----(3)
This step converts all the D intermediates formed from step (2) to E. This results in the overall equation of
, which is also the equation of interest.
Adding all three together:
(
)
Thus, the first option is the correct answer.
Supplementary:
To learn more about Hess's Law, do check out: brainly.com/question/26491956
The right answer is shape