1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
krok68 [10]
3 years ago
14

A wheelbarrow is pushed with a force of 40 N. If 6,000 J of work is

Physics
1 answer:
stepladder [879]3 years ago
5 0

Answer:

Distance = 150 meters

Explanation:

Given the following data;

Work done = 6,000 Joules

Force = 40 Newton

To find the total distance covered by the wheelbarrow;

Workdone = force * distance

Substituting into the formula, we have;

6000 = 40 * distance

Distance = 6000/40

Distance = 150 meters

Therefore, the total distance the wheelbarrow was pushed is 150 meters.

You might be interested in
A mass m at the end of a spring oscillates with a frequency of 0.89 hz. when an additional 603 g mass is added to m, the frequen
MrMuchimi

The solution for this problem:

Given:

f1 = 0.89 Hz

f2 = 0.63 Hz

Δm = m2 - m1 = 0.603 kg 


The frequency of mass-spring oscillation is: 
f = (1/2π)√(k/m) 
k = m(2πf)² 

Then we know that k is constant for both trials, we have: 
k = k 


m1(2πf1)² = m2(2πf2)² 

m1 = m2(f2/f1)² 


m1 = (m1+Δm)(f2/f1)² 


m1 = Δm/((f1/f2)²-1)

 m 1 = 0.603/ (0.89/0.63)^2 – 1

= 0.609 kg or 0.61kg or 610 g

5 0
3 years ago
Which of the following in NOT an ionic compound?<br><br> NaBr<br> MgCl2<br> O SCI2<br> K (NO3)
Nonamiya [84]
It’s could be O SCI2
4 0
2 years ago
The charge on any negatively charged oil droplet is always a whole-number multiple of the fundamental charge of a single electro
shusha [124]

Answer:

1.6\times 10^{-18} C  

Explanation:

The fundamental charge of a single electron is 1.6\times 10^{-19} C.

If there are 10 excess electrons, the net charge that would be measured should be 10 times the fundamental charge of a single electron:

Q=nq_e\\Q= 10\times 1.6\times 10^{-19} C\\Q= 1.6 \times 10^{-18} C

3 0
3 years ago
Starting from rest, a basketball rolls from the top to the bottom of a hill, reaching a translational speed of 6.1 m/s. Ignore f
tatiyna

Answer:

a) h=3.16 m, b)  v_{cm }^ = 6.43 m / s

Explanation:

a) For this exercise we can use the conservation of mechanical energy

Starting point. Highest on the hill

           Em₀ = U = mg h

final point. Lowest point

           Em_{f} = K

Scientific energy has two parts, one of translation of center of mass (center of the sphere) and one of stationery, the sphere

           K = ½ m v_{cm }^{2} + ½ I_{cm} w²

angular and linear speed are related

           v = w r

           w = v / r

            K = ½ m v_{cm }^{2} + ½ I_{cm} v_{cm }^{2} / r²

            Em_{f} = ½ v_{cm }^{2} (m + I_{cm} / r2)

as there are no friction losses, mechanical energy is conserved

             Em₀ = Em_{f}

             mg h = ½ v_{cm }^{2} (m + I_{cm} / r²)         (1)

             h = ½ v_{cm }^{2} / g (1 + I_{cm} / mr²)

for the moment of inertia of a basketball we can approximate it to a spherical shell

             I_{cm} = ⅔ m r²

we substitute

            h = ½ v_{cm }^{2} / g (1 + ⅔ mr² / mr²)

            h = ½ v_{cm }^{2}/g    5/3

             h = 5/6 v_{cm }^{2} / g

           

let's calculate

           h = 5/6 6.1 2 / 9.8

           h = 3.16 m

b) this part of the exercise we solve the speed of equation 1

          v_{cm }^{2} = 2m gh / (1 + I_{cm} / r²)

in this case the object is a frozen juice container, which we can simulate a solid cylinder with moment of inertia

              I_{cm} = ½ m r²

we substitute

             v_{cm } = √ [2gh / (1 + ½)]

             v_{cm } = √(4/3 gh)

let's calculate

             v_{cm } = √ (4/3 9.8 3.16)

             v_{cm }^ = 6.43 m / s

4 0
3 years ago
An electron moves through a uniform electric field vector E = (2.80î + 5.20ĵ) V/m and a uniform magnetic field vector B = 0.400k
alina1380 [7]

Answer:

1.758820×10^11(-2.5i-0.8j) m/s^2

Explanation:

From the question, the parameters given are; E=(2.80i+ 5.20j) v/m, a uniform magnetic field,B= 0.400K T, acceleration, a= ??? and velocity vector, v= 11.0i metre per seconds (m/s)...

We can solve this problem using the formula below;

Ma= q[E+V × B] ---------------(1).

Note: q is negative, m= mass of electron.

Making acceleration,a the subject of the formula and substituting the parameters into equation (1);

a= -e/m × (2.5i + 5.2j +11.0i × 0.400K)

a= -e/m × (2.5i+5.2j-4.4j)

a= e/m × (-2.5i - 0.8j)

e/m= 1.758820×10^11 c/kg

Therefore, slotting in the value of charge to mass(e/m) ratio;

a= 1.7588×10^11×(-2.5i-0.8j) m/s^2

7 0
3 years ago
Other questions:
  • If the net force on an object is in a negative direction, what will the direction of the resulting acceleration be
    15·1 answer
  • A truck moving at 36 m/s passes a police car moving at 45 m/s in the opposite direction. If the frequency of the siren is 500 Hz
    10·1 answer
  • Alculate the potential difference if 20J of energy are transferred by 8C of charge.
    14·1 answer
  • The Earth rotates on its axis every __________ and revolves around the Sun every __________.
    15·2 answers
  • Money is useful to people because it is __________.Select one of the options below as your answer:
    15·2 answers
  • Please Help! (15 POINTS)
    15·1 answer
  • Steve just completed a woodworking project. now he wants to put a fine finish on his work
    12·1 answer
  • Please help! 50 points and brainliest to first correct answer!
    11·2 answers
  • Which property is unique to electromagnetic waves?(1 point)
    15·2 answers
  • A syringe is filled with air of volume 10 cm at 100 kPa and then sealed. Itis compressed so that its volume is reduced by 45 %.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!