Explanation:
photography presente in frame was of 11 meter thats why
The first one is B, the second is C, the third is B, the last is C
Answer:
The total work done by the two tugboats on the supertanker is 3.44 *10^9 J
Explanation:
The force by the tugboats acting on the supertanker is constant and the displacement of the supertanker is along a straight line.
The angle between the 2 forces and displacement is ∅ = 15°.
First we have to calculate the work done by the individual force and then we can calculate the total work.
The work done on a particle by a constant force F during a straight line displacement s is given by following formula:
W = F*s
W = F*s*cos∅
With ∅ = the angles between F and s
The magnitude of the force acting on the supertanker is F of tugboat1 = F of tugboat 2 = F = 2.2 * 10^6 N
The total work done can be calculated as followed:
Wtotal = Ftugboat1 s * cos ∅1 + Ftugboat2 s* cos ∅2
Wtotal = 2Fs*cos∅
Wtotal = 2*2.2*10^6 N * 0.81 *10³ m s *cos15°
Wtotal = 3.44*10^9 Nm = <u>3.44 *10^9 J</u>
<u />
The total work done by the two tugboats on the supertanker is 3.44 *10^9 J
Answer:
option (D)
Explanation:
Here initial rotation speed is given, final rotation speed is given and asking for time.
If we use
A) θ=θ0+ω0t+(1/2)αt2
For this equation, we don't have any information about the value of angular displacement and angular acceleration, so it is not useful.
B) ω=ω0+αt
For this equation, we don't have any information about angular acceleration, so it is not useful.
C) ω2=ω02+2α(θ−θ0)
In this equation, time is not included, so it is not useful.
D) So, more information is needed.
Thus, option (D) is true.
Answer:
- 1.3 x 10⁻¹⁵ C/m
Explanation:
Q = Total charge on the circular arc = - 353 e = - 353 (1.6 x 10⁻¹⁹) C = - 564.8 x 10⁻¹⁹ C
r = Radius of the arc = 5.30 cm = 0.053 m
θ = Angle subtended by the arc = 48° deg = 48 x 0.0175 rad = 0.84 rad (Since 1 deg = 0.0175 rad)
L = length of the arc
length of the arc is given as
L = r θ
L = (0.053) (0.84)
L = 0.045 m
λ = Linear charge density
Linear charge density is given as

Inserting the values

λ = - 1.3 x 10⁻¹⁵ C/m