The purpose of the scapula to move during arm elevation is increase the range of elevation of the arm.
<h3>What is the importance of movement of the scapula during arm elevation?</h3>
The scapula is an important bone which is found in the shoulder and back region of the body.
The scapula enables and increases the range of motion of the arm with its motions.
During arm elevation, the scapula undergoes an upward rotational motion.
Therefore, the purpose of the scapula to move during arm elevation is increase the range of elevation of the arm.
Learn more about scapula motion at: brainly.com/question/5133017
#SPJ12
Complete Question
The complete question is shown on the first uploaded image
Answer:
a

b
New 
Explanation:
From the question we are told that
The refractive index of the core is 
The refractive index of the cladding is 
Generally according to Snell's law

Where
is the largest angle a largest angle a ray will make with respect to the interface of the fiber and experience total internal reflection
![\theta_{max} = 90 - sin^{-1} [\frac{n_{cladding}}{n_{core}} ]](https://tex.z-dn.net/?f=%5Ctheta_%7Bmax%7D%20%3D%2090%20-%20sin%5E%7B-1%7D%20%5B%5Cfrac%7Bn_%7Bcladding%7D%7D%7Bn_%7Bcore%7D%7D%20%5D)
![\theta_{max} = 90 - sin^{-1} [\frac{1.421}{1.497}} ]](https://tex.z-dn.net/?f=%5Ctheta_%7Bmax%7D%20%3D%2090%20-%20sin%5E%7B-1%7D%20%5B%5Cfrac%7B1.421%7D%7B1.497%7D%7D%20%5D)

Given from the question the the largest angle is 5°
Generally the refraction index of the cladding is mathematically represented as


acceleration = change in velocity/change in time
so...
a = 20 m/s / 2 seconds
a = 10
hope that helps :)
P.S. found this from Brainly User, sometimes all you have to do is search to find the answer.
A wave is a result of the disturbance in the equilibrium state. There are two types of wave, transverse and longitudinal. Transverse wave affects amplitude while longitudinal wave affects the frequency of the wave. As for the transverse wave, the magnitude of the perpendicular disturbance of the wave is directly proportional to the amplitude of the wave. The higher the transverse disturbance the higher the amplitude.
Answer:
It is very rare to see a solar eclipse from your home, because the Earth, Sun, and the moon need to align just right. Not everyone in the world can view a solar eclipse, only some area can. A solar eclipse is where the moon blocks out the sun. If you think about it: Let's say you live in Florida, U.S.A. You may see the moon coming in front of the sun, but if you lived in California or sumthin', the moon and the sun wouldn't be aligned to form a solar eclipse. It all depends on location... so it is rare to see one.