Given:
m = 555 g, the mass of water in the calorimeter
ΔT = 39.5 - 20.5 = 19 °C, temperature change
c = 4.18 J/(°C-g), specific heat of water
Assume that all generated heat goes into heating the water.
Then the energy released is
Q = mcΔT
= (555 g)*(4.18 J/(°C-g)*(19 °C)
= 44,078.1 J
= 44,100 J (approximately)
Answer: 44,100 J
Explanation:
Given:
t = 20 seconds
x = 3000 m
y = 450 m
a) To find the vertical component of the initial velocity
, we can use the equation

Solving for
,



b) We can solve for the horizontal component of the velocity
as

or

Answer:
Mass of shot (m) = 4 kg
Explanation:
Given:
Velocity (v) = 15 m/s
Mechanical kinetic energy (K.E) = 450 J
Find:
Mass of shot (m) = ?
Computation:
Mechanical kinetic energy (K.E) = 1/2mv²
Mechanical kinetic energy (K.E) = [1/2](m)(15)²
450 = [1/2](m)(15)²
900 = 225 m
Mass of shot (m) = 4 kg
The eye works When light hits the retina (a light-sensitive layer of tissue at the back of the eye), special cells called photoreceptors turn the light into electrical signals. These electrical signals travel from the retina through the optic nerve to the brain. Then the brain turns the signals into the images you see.
Answer:
-1449.69404 N/C
Explanation:
u = Velocity of particle = 
= Angle = 30°
x = Distance = 1.5 cm
m = Mass of electron = 
q = Charge of electron = 
In the case of projectile motion

The force of on the particle will balance the Electric force

Now

If y = 0


The electric field is -1449.69404 N/C