The correct answer is the one with 45000 kg*km/hr.
the formula is p = m*v
900 *50/hr giving u 45000
I know this is the correct answer because i have already turned it in and got a 100%.
Answer:
linear density of the string = 4.46 × 10⁻⁴ kg/m
Explanation:
given,
mass of the string = 31.2 g
length of string = 0.7 m
linear density of the string = 
linear density of the string = 
linear density of the string = 44.57 × 10⁻³ kg/m
linear density of the string = 4.46 × 10⁻⁴ kg/m
Answer:
65
Explanation:
The resonant frequencies for a fixed string is given by the formula nv/(2L).
Where n is the multiple
.
v is speed in m/s
.
The difference between any two resonant frequencies is given by v/(2L)= fn+1 – fn
fundamental frequency means n=1
i.e fn+1 – fn = 390 -325
= 65
As the ball is moving in air as well as we have to neglect the friction force on it
So we can say that ball is having only one force on it that is gravitational force
So the force on the ball must have to be represented by gravitational force and that must be vertically downwards
So the correct FBD will contain only one force and that force must be vertically downwards
So here correct answer must be
<em>Diagram A shows a box with a downward arrow. </em>
Answer:
The pressure drop predicted by Bernoulli's equation for a wind speed of 5 m/s
= 16.125 Pa
Explanation:
The Bernoulli's equation is essentially a law of conservation of energy.
It describes the change in pressure in relation to the changes in kinetic (velocity changes) and potential (elevation changes) energies.
For this question, we assume that the elevation changes are negligible; so, the Bernoulli's equation is reduced to a pressure change term and a change in kinetic energy term.
We also assume that the initial velocity of wind is 0 m/s.
This calculation is presented in the attached images to this solution.
Using the initial conditions of 0.645 Pa pressure drop and a wind speed of 1 m/s, we first calculate the density of our fluid; air.
The density is obtained to be 1.29 kg/m³.
Then, the second part of the question requires us to calculate the pressure drop for a wind speed of 5 m/s.
We then use the same formula, plugging in all the parameters, to calculate the pressure drop to be 16.125 Pa.
Hope this Helps!!!