Answer:
7.5 g
Explanation:
There is some info missing. I think this is the original question.
<em>Ammonium phosphate ((NH₄)₃PO₄) is an important ingredient in many fertilizers. It can be made by reacting phosphoric acid (H₃PO₄) with ammonia (NH₃). What mass of ammonium phosphate is produced by the reaction of 4.9 g of phosphoric acid? Be sure your answer has the correct number of significant digits.</em>
<em />
Step 1: Write the balanced equation
H₃PO₄ + 3 NH₃ ⇒ (NH₄)₃PO₄
Step 2: Calculate the moles corresponding to 4.9 g of phosphoric acid
The molar mass of phosphoric acid is 98.00 g/mol.

Step 3: Calculate the moles of ammonium phosphate produced from 0.050 moles of phosphoric acid
The molar ratio of H₃PO₄ to (NH₄)₃PO₄ is 1:1. The moles of (NH₄)₃PO₄ produced are 1/1 × 0.050 mol = 0.050 mol.
Step 4: Calculate the mass corresponding to 0.050 moles of ammonium phosphate
The molar mass of ammonium phosphate is 149.09 g/mol.

Answer:
Protons: 79
Electrons: 78
Explanation:
1. The number of protons is the atomic number (The atomic number for Au on the periodic table is 79)
2. Since the charge is +1 (positive) it means that there's one more proton than electrons. So, 79-1 = 78 electrons
511.2 grams of chlorine gas consumed (with excess H-) when
1,342.0 kJ of energy is released from the system.
<h3>
</h3><h3>
What is an exothermic reaction?</h3>
In thermochemistry, an exothermic reaction is a "reaction for which the overall standard enthalpy change ΔH⚬ is negative."
Given that 1 mole of chlorine releases -184.6 energy.
Then, we have to find the number of moles of chlorine when 1,342.0 kJ of energy is released from the system.
So, calculating number of moles of chlorine.
Moles = 
Moles = 7.2 mole
Now, calculating number mass of chlorine.

Mass = 7.2 mole x 71 g/mole
Mass = 511.2 gram
Learn more about exothermic reaction here:
brainly.com/question/10373907
#SPJ1
Osmium atomic number is 76