To solve this problem we will apply the concepts related to the calculation of the surface, volume and error through the differentiation of the formulas given for the calculation of these values in a circle. Our values given at the beginning are
![\phi = 76cm](https://tex.z-dn.net/?f=%5Cphi%20%3D%2076cm)
![Error (dr) = 0.5cm](https://tex.z-dn.net/?f=Error%20%28dr%29%20%3D%200.5cm)
The radius then would be
![\phi = 2\pi r \\76cm = 2\pi r\\r = \frac{38}{\pi} cm](https://tex.z-dn.net/?f=%5Cphi%20%3D%202%5Cpi%20r%20%5C%5C76cm%20%3D%202%5Cpi%20r%5C%5Cr%20%3D%20%5Cfrac%7B38%7D%7B%5Cpi%7D%20cm)
And
![\frac{d\phi}{dr} = 2\pi \\d\phi = 2\pi dr \\0.5 = 2\pi dr](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5Cphi%7D%7Bdr%7D%20%3D%202%5Cpi%20%5C%5Cd%5Cphi%20%3D%202%5Cpi%20dr%20%5C%5C0.5%20%3D%202%5Cpi%20dr)
PART A ) For the Surface Area we have that,
![A = 4\pi r^2 \\A = 4\pi (\frac{38}{\pi})^2\\A = \frac{5776}{\pi}](https://tex.z-dn.net/?f=A%20%3D%204%5Cpi%20r%5E2%20%5C%5CA%20%3D%204%5Cpi%20%28%5Cfrac%7B38%7D%7B%5Cpi%7D%29%5E2%5C%5CA%20%3D%20%5Cfrac%7B5776%7D%7B%5Cpi%7D)
Deriving we have that the change in the Area is equivalent to the maximum error, therefore
![\frac{dA}{dr} = 4\pi (2r) \\dA = 4r (2\pi dr)](https://tex.z-dn.net/?f=%5Cfrac%7BdA%7D%7Bdr%7D%20%3D%204%5Cpi%20%282r%29%20%5C%5CdA%20%3D%204r%20%282%5Cpi%20dr%29)
Maximum error:
![dA = 4(\frac{38}{\pi})(0.5)](https://tex.z-dn.net/?f=dA%20%3D%204%28%5Cfrac%7B38%7D%7B%5Cpi%7D%29%280.5%29)
![dA = \frac{76}{\pi}cm^2](https://tex.z-dn.net/?f=dA%20%3D%20%5Cfrac%7B76%7D%7B%5Cpi%7Dcm%5E2)
The relative error is that between the value of the Area and the maximum error, therefore:
![\frac{dA}{A} = \frac{\frac{76}{\pi}}{\frac{5776}{\pi}}](https://tex.z-dn.net/?f=%5Cfrac%7BdA%7D%7BA%7D%20%3D%20%5Cfrac%7B%5Cfrac%7B76%7D%7B%5Cpi%7D%7D%7B%5Cfrac%7B5776%7D%7B%5Cpi%7D%7D)
![\frac{dA}{A} = 0.01315 = 1.31\%](https://tex.z-dn.net/?f=%5Cfrac%7BdA%7D%7BA%7D%20%3D%200.01315%20%3D%201.31%5C%25)
PART B) For the volume we repeat the same process but now with the formula for the calculation of the volume in a sphere, so
![V = \frac{4}{3} \pi (\frac{38}{\pi})^3](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B4%7D%7B3%7D%20%5Cpi%20%28%5Cfrac%7B38%7D%7B%5Cpi%7D%29%5E3)
![V = \frac{219488}{3\pi^2}](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B219488%7D%7B3%5Cpi%5E2%7D)
Therefore the Maximum Error would be,
![\frac{dV}{dr} = \frac{4}{3} 3\pi r^2](https://tex.z-dn.net/?f=%5Cfrac%7BdV%7D%7Bdr%7D%20%3D%20%5Cfrac%7B4%7D%7B3%7D%203%5Cpi%20r%5E2)
![dV = 2r^2 (2\pi dr)](https://tex.z-dn.net/?f=dV%20%3D%202r%5E2%20%282%5Cpi%20dr%29)
![dV = 4r^2 (\pi dr)](https://tex.z-dn.net/?f=dV%20%3D%204r%5E2%20%28%5Cpi%20dr%29)
Replacing the value for the radius
![dV = 4(\frac{38}{\pi})^2(0.5)](https://tex.z-dn.net/?f=dV%20%3D%204%28%5Cfrac%7B38%7D%7B%5Cpi%7D%29%5E2%280.5%29)
![dV = \frac{2888}{\pi^2} cm^3](https://tex.z-dn.net/?f=dV%20%3D%20%5Cfrac%7B2888%7D%7B%5Cpi%5E2%7D%20cm%5E3)
And the relative Error
![\frac{dV}{V} = \frac{ \frac{2888}{\pi^2}}{ \frac{219488}{3\pi^2} }](https://tex.z-dn.net/?f=%5Cfrac%7BdV%7D%7BV%7D%20%3D%20%5Cfrac%7B%20%5Cfrac%7B2888%7D%7B%5Cpi%5E2%7D%7D%7B%20%5Cfrac%7B219488%7D%7B3%5Cpi%5E2%7D%20%7D)
![\frac{dV}{V} = 0.03947](https://tex.z-dn.net/?f=%5Cfrac%7BdV%7D%7BV%7D%20%3D%200.03947)
![\frac{dV}{V} = 3.947\%](https://tex.z-dn.net/?f=%5Cfrac%7BdV%7D%7BV%7D%20%3D%203.947%5C%25)
Answer:
1.97 seconds
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.8 m/s²
![s=ut+\frac{1}{2}at^2\\\Rightarrow 21=4.5t+\frac{1}{2}\times -9.8\times t^2\\\Rightarrow 21=-4.5t-4.9t^2\\\Rightarrow 4.9t^2+4.5t-28=0\\\Rightarrow 49t^2+45t-280=0](https://tex.z-dn.net/?f=s%3Dut%2B%5Cfrac%7B1%7D%7B2%7Dat%5E2%5C%5C%5CRightarrow%2021%3D4.5t%2B%5Cfrac%7B1%7D%7B2%7D%5Ctimes%20-9.8%5Ctimes%20t%5E2%5C%5C%5CRightarrow%2021%3D-4.5t-4.9t%5E2%5C%5C%5CRightarrow%204.9t%5E2%2B4.5t-28%3D0%5C%5C%5CRightarrow%2049t%5E2%2B45t-280%3D0)
Solving the above equation we get
![t=\frac{-45+\sqrt{45^2-4\cdot \:49\left(-280\right)}}{2\cdot \:49}, \frac{-45-\sqrt{45^2-4\cdot \:49\left(-280\right)}}{2\cdot \:49}\\\Rightarrow t=1.97, -2.89](https://tex.z-dn.net/?f=t%3D%5Cfrac%7B-45%2B%5Csqrt%7B45%5E2-4%5Ccdot%20%5C%3A49%5Cleft%28-280%5Cright%29%7D%7D%7B2%5Ccdot%20%5C%3A49%7D%2C%20%5Cfrac%7B-45-%5Csqrt%7B45%5E2-4%5Ccdot%20%5C%3A49%5Cleft%28-280%5Cright%29%7D%7D%7B2%5Ccdot%20%5C%3A49%7D%5C%5C%5CRightarrow%20t%3D1.97%2C%20-2.89)
So, the time the package was in the air is 1.97 seconds
Your answer is A
Pls mark me brainiest and I sure hope this helps you
Answer:
Explanation:
a ) Let let the frictional force needed be F
Work done by frictional force = kinetic energy of car
F x 107 = 1/2 x 1400 x 35²
F = 8014 N
b )
maximum possible static friction
= μ mg
where μ is coefficient of static friction
= .5 x 1400 x 9.8
= 6860 N
c )
work done by friction for μ = .4
= .4 x 1400 x 9.8 x 107
= 587216 J
Initial Kinetic energy
= .5 x 1400 x 35 x 35
= 857500 J
Kinetic energy at the at of collision
= 857500 - 587216
= 270284 J
So , if v be the velocity at the time of collision
1/2 mv² = 270284
v = 19.65 m /s
d ) centripetal force required
= mv₀² / d which will be provided by frictional force
= (1400 x 35 x 35) / 107
= 16028 N
Maximum frictional force possible
= μmg
= .5 x 1400 x 9.8
= 6860 N
So this is not possible.
Answer:
1.6 s
Explanation:
To find the time in which the potential difference of the inductor reaches 24V you use the following formula:
![V_L=V_oe^{-\frac{Rt}{L}}](https://tex.z-dn.net/?f=V_L%3DV_oe%5E%7B-%5Cfrac%7BRt%7D%7BL%7D%7D)
V_o: initial voltage = 60V
R: resistance = 24-Ω
L: inductance = 42H
V_L: final voltage = 24 V
You first use properties of the logarithms to get time t, next, replace the values of the parameter:
![\frac{V_L}{V_o}=e^{-\frac{Rt}{L}}\\\\ln(\frac{V_L}{V_o})=-\frac{Rt}{L}\\\\t=-\frac{L}{R}ln(\frac{V_L}{V_o})\\\\t=-\frac{42H}{24\Omega}ln(\frac{24V}{60V})=1.6s](https://tex.z-dn.net/?f=%5Cfrac%7BV_L%7D%7BV_o%7D%3De%5E%7B-%5Cfrac%7BRt%7D%7BL%7D%7D%5C%5C%5C%5Cln%28%5Cfrac%7BV_L%7D%7BV_o%7D%29%3D-%5Cfrac%7BRt%7D%7BL%7D%5C%5C%5C%5Ct%3D-%5Cfrac%7BL%7D%7BR%7Dln%28%5Cfrac%7BV_L%7D%7BV_o%7D%29%5C%5C%5C%5Ct%3D-%5Cfrac%7B42H%7D%7B24%5COmega%7Dln%28%5Cfrac%7B24V%7D%7B60V%7D%29%3D1.6s)
hence, after 1.6s the inductor will have a potential difference of 24V