Answer:
A practical siphon, operating at typical atmospheric pressures and tube heights, works because gravity pulling down on the taller column of liquid leaves reduced pressure at the top of the siphon (formally, hydrostatic pressure when the liquid is not moving).
I hope it's helpful!
Answer:
Atoms are made up of even smaller particles called <u>protons,</u><u> </u><u>electrons </u><u>&</u><u> </u><u>neutrons</u><u> </u><u>(</u><u>sub</u><u>-</u><u>atomic </u><u>particles)</u>
Answer:
A. 51.42 m.
B. 17.14 s.
Explanation:
Using equations of motion:
vf^2 = vi^2 + 2 * aS
Where,
vf = final velocity
a = acceleration
S = distance to which swan traveled
vi = 0 m/s
6.00^2 = 2 * 0.350S
S = 36/0.7
= 51.42 m.
B.
vf = vi + at
6 = 0 + 0.35t
t = 6/0.35
= 17.14 s.
Answer:
P₂ = 138.88 10³ Pa
Explanation:
This is a problem of fluid mechanics, we must use the continuity and Bernoulli equation
Let's start by looking for the top speed
Q = A₁ v₁ = A₂ v₂
We will use index 1 for the lower part and index 2 for the upper part, let's look for the speed in the upper part (v2)
v₂ = A₁ / A₂ v₁
They indicate that A₂ = ½ A₁ and give the speed at the bottom (v₁ = 1.20 m/s)
v₂ = 2 1.20
v₂ = 2.40 m / s
Now let's write the Bernoulli equation
P₁ + ½ ρ v₁² + ρ g y₁ = P2 + ½ ρ v₂² + ρ g y₂
Let's clear the pressure at point 2
P₂ = P₁ + ½ ρ (v₁² - v₂²) + ρ g (y₁-y₂)
we put our reference system at the lowest point
y₁ - y₂ = -20 cm
Let's calculate
P₂ = 143 10³ + ½ 1000 (1.20² - 2.40²) + 1000 9.8 (-0.200)
P₂ = 143 103 - 2,160 103 - 1,960 103
P₂ = 138.88 10³ Pa
Answer:
B = 0.15 T
Explanation:
To find the magnitude of the magnetic field you use the following formula:
( 1 )
m: mass of the electron = 9.1*10^-31 kg
v: velocity of the electron = 3*10^6 m/s
q: charge = 1.6*10^-19
r: radius = 0.11mm = 0.11*10^-3 m
You replace the values of the parameters in the equation (1).

the magnetic field has a magnitude of 0.15 T