Answer:
11.27N
Explanation:
Given parameters:
Mass of the book = 1.15kg
Unknown:
Magnitude of the normal force = ?
Solution:
The normal force is the vertical force exerted by a body on an object.
It can be described as the weight of an object.
Normal force = mass x acceleration due to gravity
Normal force = 1.15 x 9.8 = 11.27N
Answer:
gfhvgtrtjrgvfjrrgfrfftuyrisnhdvfcgfridkjhsybvvtfvjfcgvwjfccegvghcvgrcgvrekgvrkgvkvvrvkvfgkerruuyti
Answer:
a)
, b)
, c) 
Explanation:
a) The change in the gravitational potential energy of the marble-Earth system is:


b) The change in the elastic potential energy of the spring is equal to the change in the gravitational potential energy, then:

c) The spring constant of the gun is:




Space telescopes must be placed in orbit around earth in order to observe short-wavelength radiation.
<h3>What is telescope?</h3>
A telescope is an optical instrument that uses lenses, curved mirrors, or a combination of both to watch distant objects.
When atoms in a gas reach this temperature, they travel so quickly that when they collide, they release X-ray photons with wavelengths smaller than 10 nanometers.
Because the Earth's atmosphere prevents all X-rays from space, these wavelengths must be seen using space telescopes.
To study short-wavelength radiation, space telescopes must be put in orbit around the Earth.
Hence, space telescope is the correct answer.
To learn more about the telescope, refer:
brainly.com/question/556195
#SPJ1
Answer:

29010.53917 m
Explanation:
= Density of asteroid = 2 g/cm³
V = Volume
d = Diameter = 10 km
r = Radius = 
v = Velocity = 11 km/s
= Heat vaporization of water = 
= Change in temperature = 100-20
Mass is given by

The kinetic energy is

Heat is given by

Mass of water is 
Volume is 
Amount of water is 
If it were a cube

The height of the water would be 29010.53917 m