1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gulaghasi [49]
3 years ago
13

To develop muscle tone, a woman lifts a 2.50 kg weight held in her hand. She uses her biceps muscle to flex the lower arm throug

h an angle of 60.0°.What is the angular acceleration (in rad/s2) if the weight is 24.0 cm from the elbow joint, her forearm has a moment of inertia of 0.250 kg · m2, and the net force she exerts is 550 N at an effective perpendicular lever arm of 2.10 cm? (Ignore gravity)How much work (in J) does she do?
Physics
1 answer:
Romashka [77]3 years ago
4 0

To solve this problem we will use the concepts related to Torque as a function of the Force in proportion to the radius to which it is applied. In turn, we will use the concepts of energy expressed as Work, and which is described as the Torque's rate of change in proportion to angular displacement:

\tau = Fr

Where,

F = Force

r = Radius

Replacing we have that,

\tau = Fr

\tau = 21cm (\frac{1m}{100cm})* 550N

\tau = 11.55Nm

The moment of inertia is given by 2.5kg of the weight in hand by the distance squared to the joint of the body of 24 cm, therefore

I = 0.25Kg\cdot m^2 +(2.5kg)(0.24m)^2

I = 0.394kg\cdot m^2

Finally, angular acceleration is a result of the expression of torque by inertia, therefore

\tau = I\alpha \rightarrow \alpha = \frac{\tau}{I}

\alpha = \frac{11.55}{0.394}

\alpha = 29.3 rad/s^2

PART B)

The work done is equivalent to the torque applied by the distance traveled by 60 °° in radians (\pi / 3), therefore

W = \tau \theta

W = 11.5* \frac{\pi}{3}

W = 12.09J

You might be interested in
Returning once again to our table top example of a horizontal mass on a low-friction surface with m = 0.254 kg and k = 10.0 N/m
Julli [10]

Explanation:

Given that,

Mass = 0.254 kg

Spring constant [tex[\omega_{0}= 10.0\ N/m[/tex]

Force = 0.5 N

y = 0.628

We need to calculate the A and d

Using formula of A and d

A=\dfrac{\dfrac{F_{0}}{m}}{\sqrt{(\omega_{0}^2-\omega^{2})^2+y^2\omega^2}}.....(I)

tan d=\dfrac{y\omega}{(\omega^2-\omega^2)}....(II)

Put the value of \omega=0.628\ rad/s in equation (I) and (II)

A=\dfrac{\dfrac{0.5}{0.254}}{\sqrt{(10.0^2-0.628)^2+0.628^2\times0.628^2}}

A=0.0198

From equation (II)

tan d=\dfrac{0.628\times0.628}{((10.0^2-0.628)^2)}

d=0.0023

Put the value of \omega=3.14\ rad/s in equation (I) and (II)

A=\dfrac{\dfrac{0.5}{0.254}}{\sqrt{(10.0^2-3.14)^2+0.628^2\times3.14^2}}

A=0.0203

From equation (II)

tan d=\dfrac{0.628\times3.14}{((10.0^2-3.14)^2)}

d=0.0120

Put the value of \omega=6.28\ rad/s in equation (I) and (II)

A=\dfrac{\dfrac{0.5}{0.254}}{\sqrt{(10.0^2-6.28)^2+0.628^2\times6.28^2}}

A=0.0209

From equation (II)

tan d=\dfrac{0.628\times6.28}{((10.0^2-6.28)^2)}

d=0.0257

Put the value of \omega=9.42\ rad/s in equation (I) and (II)

A=\dfrac{\dfrac{0.5}{0.254}}{\sqrt{(10.0^2-9.42)^2+0.628^2\times9.42^2}}

A=0.0217

From equation (II)

tan d=\dfrac{0.628\times9.42}{((10.0^2-9.42)^2)}

d=0.0413

Hence, This is the required solution.

5 0
3 years ago
330 g of water at 55°c are poured into an 855 g aluminum container with an initial temperature of 10°
Olenka [21]
The final temperature of the system is 32.5°
we know,  H = mcT 
where, H = Heat content of the body 
m = Mass,
c = Specific heat
T = Change in temperature
According to to the Principle of Calorimetry 

The net heat remains constant i.e. 
⇒ the heat given by water = heat accepted by the aluminum container.
⇒ 330 x 1 x (45 - T) = 855 x \frac{900}{4200} x (T - 10) 

⇒ 14,850 - 330T = 183.21T  - 1832 

⇒ - 513.21 T = - 16682

or T = 32.5°
3 0
3 years ago
3
vodka [1.7K]

Answer:

3 electron hai bro of puch mujhe sab aata h

6 0
3 years ago
Read 2 more answers
What is the definition of major plates?
lutik1710 [3]

Answer:

The outer shell of the earth, the lithosphere

Explanation:

The seven major plates are the African plate, Antarctic plate, Eurasian plate, Indo-Australian plate, North American plate, Pacific plate and South American plate.

7 0
3 years ago
When an atomic nucleas emits a beta particle, what happens to the atomic number of the atom
sveta [45]
<span>When an atomic nucleus emits a beta particle, "Atomic number remains same"

Hope this helps!</span>
5 0
3 years ago
Read 2 more answers
Other questions:
  • Two students are relaxing in their dorm room and are too lazy to get up and shut the door. One of the students suggests throwing
    13·2 answers
  • Acceleration = change of velocity divided by time interval = Δv/Δt.
    7·1 answer
  • A coin released at rest from the top of a tower hits the ground after falling 1.5 s. What is the speed of the coin as it hits th
    7·1 answer
  • 50 cm to mA flat coil of wire consisting of 20 turns, each with an area of 50 cm2, is positioned perpendicularly to a uniform ma
    14·1 answer
  • A 1.0μF capacitor with an initial stored energy of 0.50 J is discharged through a 1.0MΩ resistor. (a) What is the initial charge
    11·1 answer
  • The resistance of resistor is greater for:
    5·1 answer
  • What is the momentum of an airplane with a mass of 360,000 kg moving<br> down the runway at 1.5 m/s?
    13·1 answer
  • 1. Why do certain elements have isotopes?
    7·1 answer
  • Suppose a pendulum clock has been calibrated to be accurate in San Francisco, where g = 9.800 m/s2 . In Camrose, g = 9.811 m/s2
    6·1 answer
  • Physics
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!