Answer: 4
Explanation:
Given that:
Mass of car M = 2200 kg
Initial speed Vi = 50 km/hr
Final speed Vf = 100 km/hr
Kinetic energy is the energy possessed by a moving object. It is measured in joules, and depends on the mass (m) of the object and the speed (v) by which it moves
i.e K.E = 1/2MV^2
So, when traveling at 50 km/h
KE = 1/2x 2200kg x (50km/h)^2
KE = 0.5 x 2200 x 2500
KE1 = 2750000J
So, when traveling at 100 km/h
KE = 1/2x 2200 x (100 km/h)^2
KE = 0.5 x 2200 x 10000
KE2 = 11000000J
Thus, the number of times kinetic energy increases is obtained by dividing KE2 by KE1
i.e 11000000J / 2750000J
= 4
Thus, the kinetic energy from the car’s forward motion increase 4 times
Answer:
85 N
Explanation:
Given that crate mass = 20kg
Distance = 6m
Time = 3 seconds
Coefficient of kinetic friction = 0.3
We begin by calculating for acceleration
Which was gotten as 1.33 m/s sq
SEE THE ATTACHEMENT FOR DETAILS
Answer:
C. 85%
Explanation:
A cylinder fitted with a piston exists in a high-pressure chamber (3 atm) with an initial volume of 1 L. If a sufficient quantity of a hydrocarbon material is combusted inside the cylinder to produce 1 kJ of energy, and if the volume of the chamber then increases to 1.5 L, what percent of the fuel's energy was lost to friction and heat?
A. 15%
B. 30%
C. 85%
D. 100%
work done by the system will be
W=PdV
p=pressure
dV=change in volume
3tam will be changed to N/m^2
3*1.01*10^5
W=3.03*10^5*(1.5-1)
convert 0.5L to m^3
5*10^-4
W=3.03*10^5*5*10^-4
W=152J
therefore
to find the percentage used
152/1000*100
15%
100%-15%
85% uf the fuel's energy was lost to friction and heat
(6-16)/4.0=-2.5 m/s²
Acceleration of the car is -2.5 m/s²
True because they can focus on small goals to eventually solve their big problems.