1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
never [62]
3 years ago
11

What type of relationship exists between acceleration and mass?

Physics
1 answer:
likoan [24]3 years ago
7 0
Here, you can derive that by numerical method, as follows:
F = m.a
m = F/a

So, here we can see when we decrease one, other increase by same effect; we can say they are "Indirectly Proportional" to each other!

Hope this helps!
You might be interested in
A resistor with resistance R and an air-gap capacitor of capacitance C are connected in series to a battery (whose strength is "
blsea [12.9K]

Answer:

a) Q = C*emf

b)  Reduction in electric field strength and electric potential

c) Initial current through the resistor = emf/R

d) The final charge = K*C*emf

Explanation:

a) The resistors and capacitors are connected in series with the battery

Using Kirchoff's voltage law, sum of all voltages in the circuit is zero

Let V_{R} = Voltage dropped across the Resistor

V_{c} = Voltage dropped across the capacitor

Applying KVL;

emf - V_{R}  - V_{c} = 0\\.........................(1)

Since the connection is in series, the same current flow through the circuit

V_{R} = IR\\Q = CV_{c} \\V_{c} = Q/C

Putting V_{c} and V_{R} into equation (1)

emf - IR - Q/C = 0

At the final charge, the capacitor in fully charged, and current drops to zero due to equilibrium

I = 0A\\emf = Q/C\\Q = C* emf

b) Current starts running through the plate because as the sheet of plastic is inserted between the plates both the electric field intensity and the electric potential reduces. The charge also reduces, then current flows

c) The current through the resistor is the current through the entire circuit ( series connection)

I = I_{o} \exp(\frac{-t}{RC} )\\At time the initial time, t\\t = 0\\ I_{o} = \frac{emf}{R} \\

Putting the values of t and I₀ into the formula for I written above

I = \frac{emf}{R} \exp(0)\\I = \frac{emf}{R}

d) NB: The initial charge on the capacitor = C * emf

The final charge will be:

Q = K* Q_{initial} \\Q_{initial}  = C *emf\\Q_{final}  = KCemf

4 0
3 years ago
Two blocks are connected by a light string that passes over two frictionless pulleys. The block of mass m2 is attached to a spri
irina1246 [14]

(BELOW YOU CAN FIND ATTACHED THE IMAGE OF THE SITUATION)

Answer:

d=\frac{2g(m1-m2)}{k}

Explanation:

For this we're going to use conservation of mechanical energy because there are nor dissipative forces as friction. So, the change on mechanical energy (E) should be zero, that means:

E_{i}=E_{f}

K_{i}+U_{i}=K_{f}+U_{f} (1)

With K_{i} the initial kinetic energy, U_{i} the initial potential energy, K_{f} the final kinetic energy and U_{f} the final potential energy. Note that initialy the masses are at rest so K_{i} = 0, when they are released the block 2 moves downward because m2>m1 and finally when the mass 2 reaches its maximum displacement the blocks will be instantly at rest so K_{f} =0. So, equation (1) becomes:

U_{i}=U_{f} (2)

At initial moment all the potential energy is gravitational because the spring is not stretched so U_{i}=U_{gi} and at final moment we have potential gravitational energy and potential elastic energy so U_{f}=U_{gf}+U_{ef}, using this on (2)

U_{gi}=U_{gf}+U_{ef} (3)

Additional if we define the cero of potential gravitational energy as sketched on the figure below (See image attached), U_{gi}=0 and we have by (3) :

0= U_{gf}+U_{ef} (4)

Now when the block 1 moves a distance d upward the block 2 moves downward a distance d too (to maintain a constant length of the rope) and the spring stretches a distance d, so (4) is:

0=-m1gd+m2gd+\frac{kd^{2}}{2}

dividing both sides by d

0=-m1g+m2g+\frac{kd}{2}

g(m1-m2)= \frac{kd}{2}

d=\frac{2g(m1-m2)}{k}, with k the constant of the spring and g the gravitational acceleration.

7 0
3 years ago
the face of a cube towards A is brightly and shiny and the face towards V is full black.State with reason the adjustments that s
MariettaO [177]

Explanation:

increase the distance of cube from black and dull substance

5 0
3 years ago
When something is hit harder how does the transverse wave change?
Flura [38]
When something is hit harder just like when sound is turned up the waves become higher and more frequent like a zig zag more so then wavy.
5 0
2 years ago
PLEASE HELP!! I’ll give brainliest pls
marin [14]

Answer:

A

Explanation:

houses use alternating current source

6 0
2 years ago
Other questions:
  • X-component of length 5 and a y-component of length 4. What is the angle of the vector?
    11·1 answer
  • Choose the correct description of what do we mean when we say that light is an electromagnetic wave and the relationship among w
    8·1 answer
  • Match the term to its definition.
    15·2 answers
  • As a photon from the Sun's core interacts with an atom or ion, the photon gives up its energy to the particle. But the excited p
    14·1 answer
  • The force of gravity decreases at a constant rate as we move away from a planet like Jupiter. True or false
    7·1 answer
  • Frente a una lente convergente delgada se coloca un objeto a una distancia de 50 cm. La imagen de este objeto aparece del otro l
    9·1 answer
  • Which force below does the most work? All three displacements are the same. The 10 N force. The 8 N force The 6 N force. They al
    15·1 answer
  • How much power is required to do 180 J of work in 2.4s?​
    13·2 answers
  • A circuit connected to a battery of 1.9 voltage. has a current of 0.07 amps. What is the resistance
    10·1 answer
  • give an example of how the law of inertia is demonstrated (a) for moving objects and (b) for objects at rest
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!