Producers (autotroph)
I’m sorry if this isn’t the answer you were looking for, if so, please be more specific and I can try to help again, thank you.
The molar mass of the gas is 77.20 gm/mole.
Explanation:
The data given is:
P = 3.29 atm, V= 4.60 L T= 375 K mass of the gas = 37.96 grams
Using the ideal Gas Law will give the number of moles of the gas. The formula is
PV= nRT (where R = Universal Gas Constant 0.08206 L.atm/ K mole
Also number of moles is not given so applying the formula
n= mass ÷ molar mass of one mole of the gas.
n = m ÷ x ( x molar mass) ( m mass given)
Now putting the values in Ideal Gas Law equation
PV = m ÷ x RT
3.29 × 4.60 = 37.96/x × 0.08206 × 375
15.134 = 1168.1241 ÷ x
15.134x = 1168.1241
x = 1168.1241 ÷ 15.13
x = 77.20 gm/mol
If all the units in the formula are put will get cancel only grams/mole will be there. Molecular weight is given by gm/mole.
These rocks were either roasted or exposed to severe weathering
The balanced equation for the above reaction is;
2K + Cl₂ ---> 2KCl
Stoichiomtery of K to KCl is 2:2
Potassium is the limiting reactant which is fully consumed in the reaction. The amount of product formed depends on amount of limits reactant present.
Number of moles of K reacted - 6.75 g/ 39 g/mol = 0.17 mol
Therefore number of KCl moles formed - 0.17 mol
Mass of KCl formed - 0.17 mol x 74.5 g/mol = 12.67 g
Answer:
It's D. On the surface of the solid.
Explanation:
If the reactant is a solid, the surface area of the solid will impact how fast the reaction goes. This is because the two types of molecule can only bump into each other at the liquid solid interface, i.e. on the surface of the solid. So the larger the surface area of the solid, the faster the reaction will be.