Solution :
For the reaction :

we have
![$Ka = \frac{[\text{Tris}^- \times H_3O]}{\text{Tris}^+}$](https://tex.z-dn.net/?f=%24Ka%20%3D%20%5Cfrac%7B%5B%5Ctext%7BTris%7D%5E-%20%5Ctimes%20H_3O%5D%7D%7B%5Ctext%7BTris%7D%5E%2B%7D%24)


Clearing
, we have 
So to reach
, one must have the
concentration of the :
![$\text{[OH}^-]=10^{-pOH} = 6.31 \times 10^{-7} \text{ moles of base}$](https://tex.z-dn.net/?f=%24%5Ctext%7B%5BOH%7D%5E-%5D%3D10%5E%7B-pOH%7D%20%3D%206.31%20%5Ctimes%2010%5E%7B-7%7D%20%5Ctext%7B%20moles%20of%20base%7D%24)
So we can add enough of 1 M NaOH in order to neutralize the acid that is calculated above and also adding the calculated base.


Volume NaOH 
Tris mass 
Now to prepare the said solution we must mix:
gauge to 1000 mL with water.
Answer:
the answer for this question is the option D
The chemical elements are arranged in order of increasing atomic number. Answer A.
Heat from fire or heat from the sun warming your face
Answer: polar molecule.
Explanation:
The boiling point is the temperature at which the vapor pressure of a liquid equals the external pressure surrounding the liquid. The boiling point is dependent on the type of forces present.
Iodine monochloride (ICl) is a polar molecule due to the difference in electronegativities of iodine and chlorine. Thus the molecules are bonded by strong dipole dipole forces. Thus a higher temperature is needed to generate enough vapor pressure.
Bromine
is a non polar molecule as there is no electronegativity difference between two bromine atoms. The molecules are bonded by weak vanderwaal forces and thus has low boiling point.