1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Goryan [66]
3 years ago
13

Find the surface area of the cylinder. Round to the nearest whole number.

Mathematics
2 answers:
julsineya [31]3 years ago
8 0
D. Sorry if incorrect
natulia [17]3 years ago
4 0

Answer:

I think it is 730

Step-by-step explanation:

I hope this helped o(〃^▽^〃)o

You might be interested in
Name the value of x that would make the relation ...
KengaRu [80]
The relation is between the x- values and y-values of the ordered pairs. The set of all x-values is called the domain and the set of all y-values is called the range
8 0
2 years ago
Read 2 more answers
Find all the complex roots. Write the answer in exponential form.
dezoksy [38]

We have to calculate the fourth roots of this complex number:

z=9+9\sqrt[]{3}i

We start by writing this number in exponential form:

\begin{gathered} r=\sqrt[]{9^2+(9\sqrt[]{3})^2} \\ r=\sqrt[]{81+81\cdot3} \\ r=\sqrt[]{81+243} \\ r=\sqrt[]{324} \\ r=18 \end{gathered}\theta=\arctan (\frac{9\sqrt[]{3}}{9})=\arctan (\sqrt[]{3})=\frac{\pi}{3}

Then, the exponential form is:

z=18e^{\frac{\pi}{3}i}

The formula for the roots of a complex number can be written (in polar form) as:

z^{\frac{1}{n}}=r^{\frac{1}{n}}\cdot\lbrack\cos (\frac{\theta+2\pi k}{n})+i\cdot\sin (\frac{\theta+2\pi k}{n})\rbrack\text{ for }k=0,1,\ldots,n-1

Then, for a fourth root, we will have n = 4 and k = 0, 1, 2 and 3.

To simplify the calculations, we start by calculating the fourth root of r:

r^{\frac{1}{4}}=18^{\frac{1}{4}}=\sqrt[4]{18}

<em>NOTE: It can not be simplified anymore, so we will leave it like this.</em>

Then, we calculate the arguments of the trigonometric functions:

\frac{\theta+2\pi k}{n}=\frac{\frac{\pi}{2}+2\pi k}{4}=\frac{\pi}{8}+\frac{\pi}{2}k=\pi(\frac{1}{8}+\frac{k}{2})

We can now calculate for each value of k:

\begin{gathered} k=0\colon \\ z_0=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{0}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{0}{2}))) \\ z_0=\sqrt[4]{18}\cdot(\cos (\frac{\pi}{8})+i\cdot\sin (\frac{\pi}{8}) \\ z_0=\sqrt[4]{18}\cdot e^{i\frac{\pi}{8}} \end{gathered}\begin{gathered} k=1\colon \\ z_1=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{1}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{1}{2}))) \\ z_1=\sqrt[4]{18}\cdot(\cos (\frac{5\pi}{8})+i\cdot\sin (\frac{5\pi}{8})) \\ z_1=\sqrt[4]{18}e^{i\frac{5\pi}{8}} \end{gathered}\begin{gathered} k=2\colon \\ z_2=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{2}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{2}{2}))) \\ z_2=\sqrt[4]{18}\cdot(\cos (\frac{9\pi}{8})+i\cdot\sin (\frac{9\pi}{8})) \\ z_2=\sqrt[4]{18}e^{i\frac{9\pi}{8}} \end{gathered}\begin{gathered} k=3\colon \\ z_3=\sqrt[4]{18}\cdot(\cos (\pi(\frac{1}{8}+\frac{3}{2}))+i\cdot\sin (\pi(\frac{1}{8}+\frac{3}{2}))) \\ z_3=\sqrt[4]{18}\cdot(\cos (\frac{13\pi}{8})+i\cdot\sin (\frac{13\pi}{8})) \\ z_3=\sqrt[4]{18}e^{i\frac{13\pi}{8}} \end{gathered}

Answer:

The four roots in exponential form are

z0 = 18^(1/4)*e^(i*π/8)

z1 = 18^(1/4)*e^(i*5π/8)

z2 = 18^(1/4)*e^(i*9π/8)

z3 = 18^(1/4)*e^(i*13π/8)

5 0
1 year ago
Help me i’m in need
gtnhenbr [62]
<h3>Answer:</h3><h3>D</h3><h3 /><h3>Step-by-step explanation:</h3><h3></h3><h3>In a function, an input (x) value should have only one output (y) value.</h3><h3 />

-------------------------------------------------------------------------------------------

<em>Example: (View attached image below). </em><em>Table A</em><em> is a function because each </em><em>x </em><em>value has only 1 </em><em>y</em><em> value. But </em><em>Table B</em><em> is not a function because the </em><em>x value</em><em> of </em><em>4 </em><em>has </em><em>2 y values</em><em>.</em>

6 0
3 years ago
Read 2 more answers
A 1,600.00 principal earns 7% interest compounded semiannually twice per year' after 33 years what is the balance in the account
Dmitrij [34]
A=1600(1+0.07/2)^(2*33)=15,494.7
7 0
3 years ago
Two supplementary angles differ by 34. find the angles..​
antiseptic1488 [7]

Answer:

107°

73°

Step-by-step explanation:

Let the two supplementary angles be x° and y°.

x + y = 180....(1)

Since, supplementary angles differ by 34.

Therefore,

x - y = 34....(2)

Adding equations (1) & (2)

x + y = 180

x - y = 34

_________

2x = 214

x = 214/2

x = 107°

Plug x = 107 in equation (1)

107 + y = 180

y = 180- 107

y = 73°

3 0
2 years ago
Other questions:
  • The expression to find the perimeter of a rectangle is 2(length + width). What is the perimeter, in units, of a rectangle of len
    9·2 answers
  • If xy = 144, x + y = 30, and x &gt; y, what is the value of x – y ?
    12·1 answer
  • Use the number line to find 3/4 × 2/5. Label all the parts above and below. question number 10(picture included)
    15·1 answer
  • Write a series of rigid motions that transform pentagon ABCDE to pentagon A′B′C′D′E′
    9·1 answer
  • The figure is made up of two identical quarter circles and a rectangle. The length of the rectangle is 35 cm and its breadth is
    11·1 answer
  • 30 is 1/10 of please tell and help me​
    11·2 answers
  • BRAINLIEST if correct
    6·1 answer
  • 1, 6, 13, 22, 33, 46, 61 what comes next???????
    14·2 answers
  • Given that x = 6 and y = -4, evaluate the following expression.
    10·1 answer
  • Consider the line y equals 2 over 5 x plus 4.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!