Answer:
The correct option is;
d 4400
Explanation:
The given parameters are;
The mass of the ice = 55 g
The Heat of Fusion = 80 cal/g
The Heat of Vaporization = 540 cal/g
The specific heat capacity of water = 1 cal/g
The heat required to melt a given mass of ice = The Heat of Fusion × The mass of the ice
The heat required to melt the 55 g mass of ice = 540 cal/g × 55 g = 29700 cal
The heat required to raise the temperature of a given mass ice (water) = The mass of the ice (water) × The specific heat capacity of the ice (water) × The temperature change
The heat required to raise the temperature of the ice from 0°C to 100°C = 55 × 1 × (100 - 0) = 5,500 cal
The heat required to vaporize a given mass of ice = The Heat of Vaporization × The mass of the ice
The heat required to vaporize the 55 g mass of ice at 100°C = 80 cal/g × 55 g = 4,400 cal
The total heat required to boil 55 g of ice = 29700 cal + 5,500 cal + 4,400 cal = 39,600 cal
However, we note that the heat required to vaporize the 55 g mass of ice at 100°C = 80 cal/g × 55 g = 4,400 cal.
The heat required to vaporize the 55 g mass of ice at 100°C = 4,400 cal
C=10⁻⁶ mol/L
pH=14-pOH
pOH=-lg[OH⁻]
pH=14+lg10⁻⁶=14-6=8
B. pH = 8
Answer: Option (A) is the correct answer.
Explanation:
The process in which two or more small nuclei combine together to result in the formation of a larger nuclei is known as fusion.
In Sun, four hydrogen nuclei combine together to result in the formation of helium atom. This combining of small hydrogen nuclei to form a large helium nuclei represents fusion process occurring inside the Sun.
Thus, we can conclude that to power itself, the sun is constantly generating a nuclear reaction in its core, in which hydrogen nuclei are combined to form helium. This process is known as fusion.
C. CaCl2 is the correct answer