1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alecsey [184]
3 years ago
15

How does an air pump work​

Physics
2 answers:
timurjin [86]3 years ago
6 0

Answer:

When the piston is pulled up, air gets sucked into the pump through the inlet. The pump chamber depressurizes as it fills with air. When the piston is forced down, the air becomes compressed and closes the inlet. Then the air flows out from the outlet.

Explanation:

jarptica [38.1K]3 years ago
5 0

Answer:

When the piston is pulled up, air gets sucked into the pump through the inlet. The pump chamber depressurizes as it fills with air. When the piston is forced down, the air becomes compressed and closes the inlet. Then the air flows out from the outlet

You might be interested in
Pure water has a pH of 7. Pure water _______. A. Is a neutral substance B. Could be either an acid or a base C. Is a base D. Is
Hoochie [10]

A. is a neutral substance a pH of 7 describes something of neutral pH where anything less than 7 is an acid and higher is a base

5 0
3 years ago
Read 2 more answers
Newton believed that time and space are absolute, while Einstein believed that the _______ is absolute.
8_murik_8 [283]
Speed of light 

According to Einstein, the speed of light is constant in all points of reference.  In addition, he pointed out the speed of light is the maximum speed known since in practice one can never catch up with the beam of light. This is explained by his theory of relativity. 
6 0
3 years ago
Read 2 more answers
Indiana jones (83.5 kg) is running 3.75 m/s when he jumps in a stationary 312 kg mine cart. what is their joint velocity afterwa
Lubov Fominskaja [6]

Answer:

.7917 m/s

Explanation:

This is a conservation of momentum question. You have an object initially at rest (cart) so that object is initially at 0 momentum. Indiana Jones is 83.5 kg and running 3.75 m/s so he starts with a momentum of 313.125 kg * m/s because momentum is equal to mass * velocity. Once the person jumps in the cart, the cart and the person can be considered one object and by conservation of momentum, the momentum of the Indiana-cart system is equal to 313.125 kg * m/s. By that, we can set that momentum equal to the combined mass * joint velocity. So 313.125 = (83.5kg + 312kg) * joint velocity. Then just solve for the velocity. The answer should be smaller than the intial velocity of the person of 3.75 m/s because the mine cart is HUGE at 312kg.

3 0
3 years ago
An object has the acceleration graph shown in (Figure 1). Its velocity at t=0s is vx=2.0m/s. Draw the object's velocity graph fo
timama [110]

Answer:

Explanation:

We may notice that change in velocity can be obtained by calculating areas between acceleration lines and horizontal axis ("Time"). Mathematically, we know that:

v_{b}-v_{a} = \int\limits^{t_{b}}_{t_{a}} {a(t)} \, dt

v_{b} = v_{a}+ \int\limits^{t_{b}}_{t_{a}} {a(t)} \, dt

Where:

v_{a}, v_{b} - Initial and final velocities, measured in meters per second.

t_{a}, t_{b} - Initial and final times, measured in seconds.

a(t) - Acceleration, measured in meters per square second.

Acceleration is the slope of velocity, as we know that each line is an horizontal one, then, velocity curves are lines with slopes different of zero. There are three region where velocities should be found:

Region I (t = 0 s to t = 4 s)

v_{4} = 2\,\frac{m}{s}  +\int\limits^{4\,s}_{0\,s} {\left(-2\,\frac{m}{s^{2}} \right)} \, dt

v_{4} = 2\,\frac{m}{s}+\left(-2\,\frac{m}{s^{2}} \right) \cdot (4\,s-0\,s)

v_{4} = -6\,\frac{m}{s}

Region II (t = 4 s to t = 6 s)

v_{6} = -6\,\frac{m}{s}  +\int\limits^{6\,s}_{4\,s} {\left(1\,\frac{m}{s^{2}} \right)} \, dt

v_{6} = -6\,\frac{m}{s}+\left(1\,\frac{m}{s^{2}} \right) \cdot (6\,s-4\,s)

v_{6} = -4\,\frac{m}{s}

Region III (t = 6 s to t = 10 s)

v_{10} = -4\,\frac{m}{s}  +\int\limits^{10\,s}_{6\,s} {\left(2\,\frac{m}{s^{2}} \right)} \, dt

v_{10} = -4\,\frac{m}{s}+\left(2\,\frac{m}{s^{2}} \right) \cdot (10\,s-6\,s)

v_{10} = 4\,\frac{m}{s}

Finally, we draw the object's velocity graph as follows. Graphic is attached below.

3 0
4 years ago
Where were the girls heading when the car broke down?<br> in the movie *hidden figures*
Ilia_Sergeevich [38]

Explanation:

Katherine Johnson, NASA Mathematician Featured in 'Hidden Figures,' Dies at 101

Feb 25, 2020 — Their story was told in the 2016 Hollywood film “Hidden Figures,” based on Margot Lee Shetterly's nonfiction book of the same title , ...

5 0
3 years ago
Other questions:
  • Descriptive investigations involve collecting data about a system, but not making observations .
    12·2 answers
  • A series RLC circuit with L = 13 mH, C = 3.6 µF, and R = 3.2 ohms is driven by a generator with a maximum emf of 120 V and a var
    11·1 answer
  • If the distance between two masses is tripled, the gravitational force between changes by a factor of:_______
    12·1 answer
  • When a slice of buttered toast is accidentally pushed over the edge of a counter, it rotates as it falls. If the distance to the
    13·1 answer
  • Heat from a fire warming your hands is an example of​
    9·2 answers
  • SCIENCE whoever gets this first will get a brainlest
    9·2 answers
  • Which of these statements explains why we have day and night? [1] The Earth orbits the Sun once a day The Sun orbits the Earth o
    5·1 answer
  • A basketball has a coefficient of restitution of 0.821 in collisions with the wood floor of a basketball court. The ball is drop
    14·1 answer
  • Which atmospheric gas is used by plants and given off by animals? A. Carbon dioxide. B. Nitrogen C. Oxygen D. Argon​
    12·2 answers
  • 1.Una partícula de masa m = 0.2 [kg] está unido a dos resortes idénticos (de longitud L = 1.2 [m]) sobre la parte superior de un
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!