Answer:
The deceleration is 
Explanation:
From the question we are told that
The height above firefighter safety net is 
The length by which the net is stretched is 
From the law of energy conservation

Where
is the kinetic energy of the person before jumping which equal to zero(because to kinetic energy at maximum height )
and
is the potential energy of the before jumping which is mathematically represented at

and
is the kinetic energy of the person just before landing on the safety net which is mathematically represented at

and
is the potential energy of the person as he lands on the safety net which has a value of zero (because it is converted to kinetic energy )
So the above equation becomes

=> 
substituting values

Applying the equation o motion

Now the final velocity is zero because the person comes to rest
So



Answer:
x₂ = 1.33 m
Explanation:
For this exercise we must use the rotational equilibrium condition, where the counterclockwise rotations are positive and the zero of the reference system is placed at the turning point on the wall
Στ = 0
W₁ x₁ - W₂ x₂ = 0
where W₁ is the weight of the woman, W₂ the weight of the table.
Let's find the distances.
Since the table is homogeneous, its center of mass coincides with its geometric center, measured at zero.
x₁ = 2.5 -1.5 = 1 m
The distance of the person is x₂ measured from the turning point, at the point where the board begins to turn the girl must be on the left side so her torque must be negative
x₂ =
let's calculate
x₂ =
x₂ = 1.33 m
Answer:
26.8 seconds
Explanation:
To solve this problem we have to use 2 kinematics equations: *I can't use subscripts for some reason on here so I am going to use these variables:
v = final velocity
z = initial velocity
x = distance
t = time
a = acceleration


First let's find the final velocity the plane will have at the end of the runway using the first equation:


Now we can plug this into the second equation to find t:


Then using 3 significant figures we round to 26.8 seconds