1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
malfutka [58]
3 years ago
8

A ball rolls off a desk at a speed of 3 m/s and lands .40 seconds later. How far from the base of the desk does the ball land?

Physics
1 answer:
Salsk061 [2.6K]3 years ago
7 0

Is the velocity constant? Is there any friction?

3 meters per second

then after 40 seconds it must 3*40 = 120 meters

120 meters or 0.12 km if you will

You might be interested in
You stand on a frictional platform that is rotating at 1.8 rev/s. Your arms are outstretched, and you hold a heavy weight in eac
dusya [7]

Answer:

20.62361 rad/s

489.81804 J

Explanation:

I_i = Initial moment of inertia = 9.3 kgm²

I_f = Final moment of inertia = 5.1 kgm²

\omega_i = Initial angular speed = 1.8 rev/s

\omega_f = Final angular speed

As the angular momentum of the system is conserved

I_i\omega_i=I_f\omega_f\\\Rightarrow \omega_f=\dfrac{I_i\omega_i}{I_f}\\\Rightarrow \omega_f=\dfrac{9.3\times 1.8}{5.1}\\\Rightarrow \omega_f=3.28235\ rev/s=3.28235\times 2\pi=20.62361\ rad/s

The resulting angular speed of the platform is 20.62361 rad/s

Change in kinetic energy is given by

\Delta K=\dfrac{1}{2}(I_f\omega_f^2-I_i\omega_i^2)\\\Rightarrow \Delta K=\dfrac{1}{2}(5.1\times (20.62361)^2-9.3\times (1.8\times 2\pi)^2)\\\Rightarrow \Delta K=489.81804\ J

The change in kinetic energy of the system is 489.81804 J

As the work was done to move the weight in there was an increase in kinetic energy

6 0
3 years ago
Which is most likely a physical change
Finger [1]
The answer is A because the paper does not change its chemical properties only changes the way it looks.
4 0
3 years ago
Read 2 more answers
An object is 39 cm away from a concave mirrors surface along the principles axis. If the mirrors focal length is 9.50 cm, how fa
Tatiana [17]

Answer:

12.6 cm

Explanation:

We can use the mirror equation to find the distance of the image from the mirror:

\frac{1}{f}=\frac{1}{p}+\frac{1}{q}

where here we have

f = 9.50 cm is the focal length

p = 39 cm is the distance of the object from the mirror

Solving the equation for q, we find:

\frac{1}{q}=\frac{1}{f}-\frac{1}{p}=\frac{1}{9.50 cm}-\frac{1}{39 cm}=0.080 cm^{-1}\\q = \frac{1}{0.080 cm}=12.6 cm

5 0
3 years ago
A space vehicle is traveling at 2980 km/h relative to Earth when the exhausted rocket motor is disengaged and sent backward. The
Strike441 [17]

Answer:

3054.4 km/h

Explanation:

Using the conservation of momentum

momentum before separation = 5M × 2980 Km/h where M represent the mass of the module while 4 M represent the mass of the motor

initial momentum = 14900 M km/h

let v be the new speed of the motor so that the

new momentum = 4Mv and the new momentum of the module  = M ( v + 94 km/h )

total momentum = 4Mv + Mv + 93 M = 5 Mv + 93M

initial momentum = final momentum

14900 M km/h = 5 Mv + 93M

14900 km/h = 5v + 93

14900 - 93 = 5v

v = 2961.4 km/h

the speed of the module = 2961.4 + 93 = 3054.4 km/h

8 0
3 years ago
A vector → A has a magnitude of 56.0 m and points in a direction 30.0° below the negative x axis. A second vector, → B , has a m
MissTica

Answer:

  • The magnitude of the vector \vec{C} is 107.76 m

Explanation:

To find the components of the vectors we can use:

\vec{A} = | \vec{A} | \ ( \ cos(\theta) \ , \ sin (\theta) \ )

where | \vec{A} | is the magnitude of the vector, and θ is the angle over the positive x axis.

The negative x axis is displaced 180 ° over the positive x axis, so, we can take:

\vec{A} = 56.0 \ m \ ( \ cos( 180 \° + 30 \°) \ , \ sin (180 \° + 30 \°) \ )

\vec{A} = 56.0 \ m \ ( \ cos( 210 \°) \ , \ sin (210 \°) \ )

\vec{A} = ( \ -48.497 \ m \ , \ - 28 \ m \ )

\vec{B} = 82.0 \ m \ ( \ cos( 180 \° - 49 \°) \ , \ sin (180 \° - 49 \°) \ )

\vec{B} = 82.0 \ m \ ( \ cos( 131 \°) \ , \ sin (131 \°) \ )

\vec{B} = ( \ -53.797 \ m \ , \ 61.886\ m \ )

Now, we can perform vector addition. Taking two vectors, the vector addition is performed:

(a_x,a_y) + (b_x,b_y) = (a_x+b_x,a_y+b_y)

So, for our vectors:

\vec{C} = ( \ -48.497 \ m \ , \ - 28 \ m \ ) + ( \ -53.797 \ m \ ,  ) = ( \ -48.497 \ m \ -53.797 \ m , \ - 28 \ m \ + \ 61.886\ m \ )

\vec{C} = ( \ - 102.294 \ m , \ 33.886 m \ )

To find the magnitude of this vector, we can use the Pythagorean Theorem

|\vec{C}| = \sqrt{C_x^2 + C_y^2}

|\vec{C}| = \sqrt{(- 102.294 \ m)^2 + (\ 33.886 m \)^2}

|\vec{C}| =107.76 m

And this is the magnitude we are looking for.

5 0
3 years ago
Other questions:
  • What is the density of a rock that has a mass of 10 grams and the volume of 2ml?
    10·1 answer
  • An object of mass 30 kg is falling in air and experiences a force due to air resistance of 50 newtons. Determine the net force a
    6·1 answer
  • In which situation is no work being done? A. a person carrying a box from one place to another B. a person picking up a box from
    13·2 answers
  • Meteoroid is the term used to describe a solid particle that
    6·1 answer
  • Jenny and Betty are having a great time at Busch Gardens riding the Ubanga Banga bumper cars. Jenny, who is traveling southward
    7·2 answers
  • At the local playground, a 21-kg child sits on the right end of a horizontal teeter-totter, 1.8 m from the pivot point. On the l
    6·1 answer
  • Why was nuclear energy first developed?
    12·1 answer
  • Divide. Write the quotient in lowest terms.<br> 3\dfrac{3}{8} \div 9 =3 <br> 8<br> 3<br> ​ <br> ÷9
    5·2 answers
  • 1. If you add air to a flat tire through a single small entry hole, why does the air spread out to fill the tire?
    8·1 answer
  • A box sits at rest on a rough 33° inclined plane. Draw the free-body diagram, showing all the forces
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!