(C) neon (atomic number 10)
Explanation:
The atom that is chemically inert is Neon with an atomic number of 10.
An atom is chemically inert if it does not willingly take part in chemical reaction.
Atoms takes part in chemical reactions in order to attain a stable configuration as seen in the noble gases.
In the noble gases every enable level is completely filled with the appropriate number of electrons.
- The noble gases are He, Ne, Ar, Kr, Xe
- These elements do not react with others.
- From the given option, Neon is a noble gas and therefore inert.
learn more:
Noble gas brainly.com/question/1781595
#learnwithBrainly
<span>C2H5
First, you need to figure out the relative ratios of moles of carbon and hydrogen. You do this by first looking up the atomic weight of carbon, hydrogen, and oxygen. Then you use those atomic weights to calculate the molar masses of H2O and CO2.
Carbon = 12.0107
Hydrogen = 1.00794
Oxygen = 15.999
Molar mass of H2O = 2 * 1.00794 + 15.999 = 18.01488
Molar mass of CO2 = 12.0107 + 2 * 15.999 = 44.0087
Now using the calculated molar masses, determine how many moles of each product was generated. You do this by dividing the given mass by the molar mass.
moles H2O = 11.5 g / 18.01488 g/mole = 0.638361 moles
moles CO2 = 22.4 g / 44.0087 g/mole = 0.50899 moles
The number of moles of carbon is the same as the number of moles of CO2 since there's just 1 carbon atom per CO2 molecule.
Since there's 2 hydrogen atoms per molecule of H2O, you need to multiply the number of moles of H2O by 2 to get the number of moles of hydrogen.
moles C = 0.50899
moles H = 0.638361 * 2 = 1.276722
We can double check our math by multiplying the calculated number of moles of carbon and hydrogen by their respective atomic weights and see if we get the original mass of the hydrocarbon.
total mass = 0.50899 * 12.0107 + 1.276722 * 1.00794 = 7.400185
7.400185 is more than close enough to 7.40 given rounding errors, so the double check worked.
Now to find the empirical formula we need to find a ratio of small integers that comes close to the ratio of moles of carbon and hydrogen.
0.50899 / 1.276722 = 0.398669
0.398669 is extremely close to 4/10, so let's reduce that ratio by dividing both top and bottom by 2 giving 2/5.
Since the number of moles of carbon was on top, that ratio implies that the empirical formula for this unknown hydrocarbon is
C2H5</span>
Answer
The empirical formula is CrO₂Cl₂
Explanation:
Empirical formula is the simplest whole number ratio of an atom present in a compound.
The compound contain, Chromium=33.6%
Chlorine=45.8%
Oxygen=20.6%
And the molar mass of Chromium(Cr)=51.996 g mol.
Chlorine containing molar mass (Cl)= 35.45 g mol.
Oxygen containing molar mass (O)=15.999 g mol.
Step-1
Then,we will get,
Cr=
mol
Cl=
mol.
O=
mol.
Step-2
Divide the mole value with the smallest number of mole, we will get,
Cr=

Cl=

O=

Then, the empirical formula of the compound is CrO₂Cl₂ (Chromyl chloride)
Answer:
B. A rate constant
Explanation:
The mathematical expression of rate law is given below,
Rate = K[A]m[B]n
This rate law show the relationship between the rate of chemical reaction and concentration of reactants.
In given equation [A] and [B] are molar concentration of reactants while K represent rate constant.
The value of K is specific for particular reaction at particular temperature,
m and n are represent exponents and determine experimentally. The value of K is not depend upon the concentrations of reactant but depend upon the surface area and temperature
No, isotopes would have a different number of electrons