The answer is 0.59 M.
Molar mass (Mr) of MgCl₂ is the sum of the molar masses of its elements.
So, from the periodic table:
Mr(Mg) = 24.3 g/l
Mr(Cl) = 35.45 g/l
Mr(MgCl₂) = Mr(Mg) + 2Mr(Cl) = 24.3 + 2 · 35.45 = 24.3 + 70.9 = 95.2 g/l
So, 1 mol has 95.2 g/l.
Our solution contains 55.8g in 1 l of solution, which is 55.8 g/l
Now, we need to make a proportion:
1 mole has 95.2 g/l, how much moles will have 55.8 g/l:
1 M : 95.2 g/l = x : 55.8 g/l
x = 1 M · 55.8 g/l ÷ 95.2 g/l ≈ 0.59 M
Answer:
It reduces the need to import goods
Explanation:
When you buy locally, the products you buy don't come from far away, so they don't have to cross the country (or the ocean) by boat, plane or trucks to reach the market/store where you're buying, at least not from a long distance away.
The distance a vehicle travels, the less CO2 emissions it produces.
If the good you're buying is made/produced only an hour away, that's not much pollution produced compared as if the good has to come from a distant place spending days on highways to reach you.
Answer: b design procedure
Explanation:
design a procedure
Answer:
The maximum mass of carbon dioxide that could be produced by the chemical reaction is 70.6gCO_{2}
Explanation:
1. Write down the balanced chemical reaction:

2. Find the limiting reagent:
- First calculate the number of moles of hexane and oxygen with the mass given by the problem.
For the hexane:

For the oxygen:

- Then divide the number of moles between the stoichiometric coefficient:
For the hexane:

For the oxygen:

- As the fraction for the oxygen is the smallest, the oxygen is the limiting reagent.
3. Calculate the maximum mass of carbon dioxide that could be produced by the chemical reaction:
The calculations must be done with the limiting reagent, that is the oxygen.
