Answer:
2.8 * 10^(-6) / 1.4 * 10^(-2)=
2* 10^(-8)
The reaction between K₂SO₄(aq) and SrI₂(aq) produces KI(aq) and SrSO₄(s) as products.
The reaction is
K₂SO₄(aq) + SrI₂(aq) → KI(aq)+ SrSO₄(s)
To balance the equation both side of the reaction should have same number of atoms in each element.
Right hand side of the reaction has 1 K, 1 I, 1 Sr, 1 S and 4 O atoms while 2 K, 2 I, 1 Sr,1 S and 4 O present in left hand side of the reaction.
Hence, number of I atoms and number of K atoms are not balanced.
To balance the K atoms we should add 2 before KI. Then I atoms will be 2 at the right hand side.
Hence, the balanced reaction equation is
K₂SO₄(aq) + SrI₂(aq) → 2KI(aq)+ SrSO₄(s)
Answer:
Explanation:The final homogenous solution, after cooling it to 40°C, will contain 47 g of potassium sulfate disolved in 150 g of water, so you can calculate the amount disolved per 100 g of water in this way:
[47 g of solute / 150 g of water] * 100 g of g of water = 31.33 grams of solute in 100 g of water.
So, when you compare with the solutiblity, 15 g of solute / 100 g of water, you realize that the solution has more solute dissolved with means that it is supersaturated.
To make a saturated solution, 15 grams of potassium sulfate would dissolve in 100 g of water.
Read more on Brainly.com - brainly.com/question/5143785#readmore
Answer:
NH3
Explanation:
2NH3(aq)+CO2(aq)→CH4N2O(aq)+H2O(l)
So for two moles of NH3 we need one mole of CO2. So let's count moles for each reagent.
n(NH3)=m(NH3)/M(NH3)=135700/17,03=7968.29 mol
n(CO2)=m(CO2)/M(CO2)=211400/44.01=4803.45 mol
From equation we have to divide n(NH3) by 2 because we need two equivalent per one CO2. That will be 3984.145. So the limiting agent is NH3 because it's not enough of it to react with all CO2
Water boils at 100 Degrees Celsius or 212 degrees Fahrenheit