The correct option is D.
The hydrogen atoms that are attached to the nitrogen atom in the ammonia molecule are capable of forming hydrogen bond. The hydrogen bond that exist in the ammonia molecule is the reason why it shows higher boiling point compare to the other hydrides. Hydrogen bond occur in ammonia because ammonia is one of the most electronegative elements.
And a water molecule, this is called a dehydration synthesis. when 2 molecule combine, a water molecule leave.
Answer: The molar mass of each gas
Explanation:
Mole fraction is the ratio of moles of that component to the total moles of solution. Moles of solute is the ratio of given mass to the molar mass.

Suppose if there are three gases A, B and C.
a) 
b) 
c) 
moles of solute =
Thus if mass of each gas is known , we must know the molar mass of each gas to know the moles of each gas.
Answer:
Ca Hso4 ×
Explanation:
Because i did whT you said
Answer:
3.384364 time 10^24 atoms
Explanation:
multiply by avogadro's number