Answer:
0.18 moles
Explanation:
Applying,
PV = nRT................... Equation 1
Where P = pressure, V = volume, n = number of moles, R = molar gas constant, T = temperature.
make n the subject of the equation
n = PV/RT............... Equation 2
Given: V = 5.3 L, T = 22 °C = (22+272) K = 295 K, P = 632 mmHg = (0.00131579×632) = 0.8316 atm, R = 0.083 L.atm/K.mol
Substitute these values into equation 2
n = (0.8316×5.3)/(0.083×295)
n = 0.18 moles
Explanation:
the energy that that is needed to break a bond is called the bond energy or dissciation energy
They start with the numbers u need to know in order to slove the problem and there has to be a story behind it
Answer:
One gallon of octane produces approximately 7000 L of carbon dioxide.
Note:
I believe that the mass of octane should have been given as 2661 g. However, I understand that your instructor probably gave you this problem, so I will use 4000 g for the approximate mass of one gallon of octane. You can rework the problem on your own, substituting the correct masses of octane if you wish.
Step1. You must first determine the number of moles that are in 4000 g of octane, using the molar mass of octane. Step 2. Then you must determine the number of moles of carbon dioxide that can be produced by that number of moles of octane, based on the mole ratio between octane and carbon dioxide in the balanced equation. Step 3. Then use the ideal gas law to determine the volume in liters of carbon dioxide that can be formed.
Answer:
B carbon
Explanation
Lewis structure or dot structure is an easy way to get the bonding details of atoms in a molecule. If we talk about methane molecule carbon is central atom with four electrons that are bonded to four hydrogen atoms and each bond is single covalent bond.
Please see attached figure,
Hope it helps!