Answer:
5: 0.16
6: 50
Explanation:
Question 5:
We can use the equation density = mass/ volume.
We already have the mass (12g), but now we need to find the volume of the cylinder.
The equation for this is πr²h
So we know the radius is 2 and the height is 6.
π x (2)² x 6 = 24π = 75.398cm³
Now we can use the density equation above:
12/75.398 = 0.1592g/cm³ = 0.16g/cm³.
Question 6:
This time, we have to rearrange the equation density = mass/ volume to find the mass.
We know mass = density x volume.
From the question, the density is 2.5g/mL and the volume is 20mL.
Following the equation above, we do 2.5 x 20 to get 50g.
Molarity can be defined as the number of moles of solute in 1 L solution.
Molarity of Na₂SO₄ solution - 0.200 M
this means there are 0.200 moles in 1 L solution
Molar mass of Na₂SO₄ - 142 g/mol
therefore mass of Na₂SO₄ in 1.00 L - 0.200 mol x 142 g/mol = 28.4 g
a mass of 28.4 g of Na₂SO₄ is present in 1.00 L
Answer:
Explanation:
2 moles hydrogen reacts with one mole of oxygen to give 2 moles of water.
a ) rate of consumption of hydrogen ( moles per second) is twice the rate of consumption of oxygen .
b ) rate of formation of water ( moles per second ) is twice the rate of consumption of oxygen
c ) rate of formation of water ( moles per second ) is equal to the rate of consumption of hydrogen.
Answer:
Third choice.
Explanation:
The age of an object that was once living. More accurately this is obtained by radiocarbon dating, which is a form of radiometric dating.