Hi there!
The congruency theorem that proves these two triangles congruent is AAS. This is because both triangles have two congruent angles and the side comes from the side that can be proved congruent in both triangles by the reflexive property.
Hope this helps!! :)If there's anything else that I can help you with, please let me know!
Answer:
870
Step-by-step explanation:
Array model shown below along with description (at the bottom).
Answer:
D
Step-by-step explanation:
The LCD would be (y + 1) * 2y = 2y² + 2y.
Replace x and y in the equation with what they tell you x and y equal.
2(14) / 13 - 9(1/3)
Now simplify:
2 x 14 = 28
9 x 1/3 = 3
You now have:
28/13-3
Simplify again to het 28/10 this can be reduced to 14/5
Answer:
The volume of the solid is:
Step-by-step explanation:
GIven that :

This implies that the distance between the x-axis and the axis of the rotation = 2 units
The distance between the x-axis and the inner ring is r = (2+sec x) -2
Let R be the outer radius and r be the inner radius
By integration; the volume of the of the solid can be calculated as follows:
![V = \pi \int\limits^{\dfrac{\pi}{3}}_{\dfrac{-\pi}{3}} [(4-2)^2 - (2+ sec \ x -2)^2]dx \\ \\ \\ V = \pi \int\limits^{\dfrac{\pi}{3}}_{\dfrac{-\pi}{3}} [(2)^2 - (sec \ x )^2]dx \\ \\ \\ V = \pi \int\limits^{\dfrac{\pi}{3}}_{\dfrac{-\pi}{3}} [4 - sec^2 \ x ]dx](https://tex.z-dn.net/?f=V%20%3D%20%5Cpi%20%5Cint%5Climits%5E%7B%5Cdfrac%7B%5Cpi%7D%7B3%7D%7D_%7B%5Cdfrac%7B-%5Cpi%7D%7B3%7D%7D%20%5B%284-2%29%5E2%20-%20%282%2B%20sec%20%5C%20x%20-2%29%5E2%5Ddx%20%5C%5C%20%5C%5C%20%5C%5C%20V%20%3D%20%5Cpi%20%5Cint%5Climits%5E%7B%5Cdfrac%7B%5Cpi%7D%7B3%7D%7D_%7B%5Cdfrac%7B-%5Cpi%7D%7B3%7D%7D%20%5B%282%29%5E2%20-%20%28sec%20%5C%20x%20%29%5E2%5Ddx%20%5C%5C%20%5C%5C%20%5C%5C%20V%20%3D%20%5Cpi%20%5Cint%5Climits%5E%7B%5Cdfrac%7B%5Cpi%7D%7B3%7D%7D_%7B%5Cdfrac%7B-%5Cpi%7D%7B3%7D%7D%20%5B4%20-%20sec%5E2%20%5C%20x%20%5Ddx)
![V = \pi [4x - tan \ x]^{\dfrac{\pi}{3}}_{\dfrac{-\pi}{3}} \\ \\ \\ V = \pi [4(\dfrac{\pi}{3}) - tan (\dfrac{\pi}{3}) - 4(-\dfrac{\pi}{3})+ tan (-\dfrac{\pi}{3})] \\ \\ \\ V = \pi [4(\dfrac{\pi}{3}) - tan (\dfrac{\pi}{3}) + 4(\dfrac{\pi}{3})- tan (\dfrac{\pi}{3})] \\ \\ \\ V = \pi [8(\dfrac{\pi}{3}) - 2 \ tan (\dfrac{\pi}{3}) ]](https://tex.z-dn.net/?f=V%20%3D%20%5Cpi%20%5B4x%20-%20tan%20%5C%20%20x%5D%5E%7B%5Cdfrac%7B%5Cpi%7D%7B3%7D%7D_%7B%5Cdfrac%7B-%5Cpi%7D%7B3%7D%7D%20%20%5C%5C%20%5C%5C%20%5C%5C%20V%20%3D%20%5Cpi%20%5B4%28%5Cdfrac%7B%5Cpi%7D%7B3%7D%29%20-%20tan%20%28%5Cdfrac%7B%5Cpi%7D%7B3%7D%29%20-%204%28-%5Cdfrac%7B%5Cpi%7D%7B3%7D%29%2B%20tan%20%28-%5Cdfrac%7B%5Cpi%7D%7B3%7D%29%5D%20%5C%5C%20%5C%5C%20%5C%5C%20V%20%3D%20%5Cpi%20%5B4%28%5Cdfrac%7B%5Cpi%7D%7B3%7D%29%20-%20tan%20%28%5Cdfrac%7B%5Cpi%7D%7B3%7D%29%20%2B%204%28%5Cdfrac%7B%5Cpi%7D%7B3%7D%29-%20tan%20%28%5Cdfrac%7B%5Cpi%7D%7B3%7D%29%5D%20%20%5C%5C%20%5C%5C%20%5C%5C%20V%20%3D%20%5Cpi%20%5B8%28%5Cdfrac%7B%5Cpi%7D%7B3%7D%29%20%20-%202%20%5C%20%20tan%20%28%5Cdfrac%7B%5Cpi%7D%7B3%7D%29%20%5D)
![\mathbf{V = \pi [ \dfrac{8 \pi}{3} - 2\sqrt{3}]}](https://tex.z-dn.net/?f=%5Cmathbf%7BV%20%3D%20%5Cpi%20%5B%20%5Cdfrac%7B8%20%5Cpi%7D%7B3%7D%20-%202%5Csqrt%7B3%7D%5D%7D)