Solution:
initial sphere mvr = final sphere mvr + Iω
where I = mL²/3 = 2.3g * (2m)² / 3 = 3.07 kg·m²
0.25kg * (12.5 + 9.5)m/s * (4/5)2m = 3.07 kg·m² * ω
where: ω = 2.87 rad/s
So for the rod, initial E = KE = ½Iω² = ½ * 3.07kg·m² * (2.87rad/s)²
E = 12.64 J becomes PE = mgh, so
12.64 J = 2.3 kg * 9.8m/s² * h
h = 0.29 m
h = L(1 - cosΘ) → where here L is the distance to the CM
0.03m = 1m(1 - cosΘ) = 1m - 1m*cosΘ
Θ = arccos((1-0.29)/1) = 44.77 º
Speed = (distance covered) / (time to cover the distance)
= ( 8.45 km) / (0.65 hr)
= (8.45 / 0.65) km/hr
= 13 km/hr
Answer:
Weight on Earth = We = 186.2 N
Weight on Mars = Wm = 70.94 N
Explanation:
The weight of an object is defined as the force applied on the object by the gravitational field. The magnitude of weight is given by the following formula:
W = mg
were,
W= Weight of Eric
m = mass of Eric
g = acceleration due to gravity
ON EARTH:
W = We = Eric's Weight on Earth = ?
m = Eric's Mass on Earth = 19 kg
ge = acceleration due to gravity on Earth = 9.8 m/s²
Therefore,
We = (19 kg)(9.8 m/s²)
<u>We = 186.2 N</u>
<u></u>
ON MARS:
W = Wm = Eric's Weight on Mars = ?
m = Eric's Mass on Mars = 19 kg
gm = acceleration due to gravity on Mars = 0.381(ge) = (0.381)9.8 m/s² = 3.733 m/s²
Therefore,
Wm = (19 kg)(3.733 m/s²)
<u>Wm = 70.94 N</u>
"The organ proved to be a vital part of the body's metabolism" "The tissue was damaged from the scalpel but would heal" "The function of the heart is to pump blood"
Answer:
v=u+at
24=0+at
24=a×6
a=4m/s
hence
s=ut+at^2÷2
s=36m
Explanation:
since the car is brought to rest the u=0