Answer:
initial velocity is v = 4.95 m / s
Explanation:
To solve this exercise we use the projectile launch ratios, when the block leaves the hill its speed is horizontal, let's find the time it takes to fall to the other point.
Initial vertical velocity is zero
y = y₀ + v_{oy} t - ½ g t²
y-y₀ = 0 -1/2 g t²
t = 
calculate
t =
t = 2.02 s
with this time we can substitute in the horizontal displacement equation
x = v₀ₓ t
v₀ₓ = x / t
suppose that the distance between the two points is x = 10 m
v₀ₓ = 10 / 2.02
v₀ₓ = 4.95 m / s
initial velocity is v = 4.95 m / s
Answer:
The details of bands is given in explanation.
Explanation:
The electromagnetic waves are differentiated into different bands based upon their wavelengths and frequencies. The names of different bands are as follows:
1. Radio Waves
2. Micro Waves
3. Infra-red
4. Visible light
5. Ultra Violet
6. X-rays
7. Gamma Rays
<u>The frequency of every region or rays increases from 1 through 7</u>. The <u>energy of rays also increase from 1 through 7</u>. Since, the wave length is inversely related to energy and frequency, thus the <u>wavelength of rays decrease from 1 through 7</u>.
A detailed information of the bands is provided in the picture attached.
Im am going to say true! hope this helps if i am wrong sorry but if im right your welcome :)
At the top:
Potential Energy = (mass) x (gravity) x (height)
= (30 kg) x (9.8 m/s²) x (3 meters)
= 882 joules
At the bottom:
Kinetic Energy = (1/2) x (mass) x (speed)²
= (1/2) x (30 kg) x (3 m/s)²
= (15 kg) x (9 m²/s²)
= 135 joules .
He had 882 joules of potential energy at the top,
but only 135 joules of kinetic energy at the bottom.
Friction stole (882 - 135) = 747 joules of his energy while he slid down.
The seat of his jeans must be pretty warm.
The particles always move parallel and perpendicular to the waves. The waves which are in the water moves a circle. Both up and down and back and forth.
Good luck :)