The relationship between the number of visible spectral lines are identical for atoms .However they have unique wavelengths.
Option B
<u>
Explanation:</u>
A spectrum is a range of frequencies or a range of wavelengths. The photon energy of the emitted photon is equal to the difference between two states. For every atom there are quite many electron transitions and each has a energy difference.
This difference in wavelength causes spectrum .As each element emission spectrum is unique because each atom has different energy and causes uniqueness in the emission spectrum . Hence, due to the difference in energy it emits different wavelengths.
I believe it is speed.
Hope this helps!
Answer
given,
mass of the shell = 87 g = 0.087 Kg
speed of the muzzle = 853 m/s
mass of the helicopter = 4410 kg
A burst of 176 shell fired in 2.93 s
resulting average force = ?
momentum of the shell = m v
= 0.087 x 853
= 74.21 kgm/s
momentum of 176 shell is = 176 p
= 176 x 74.21
= 13060.96
momentum of helicopter = - 13060.96 kgm/s
amount of speed reduce a = 
a= 
a = 2.96 m/s²
velocity = \dfrac{2.96}{2.93}
v = 1.01 m/s
The given question is incomplete. The complete question is as follows.
An oxygen molecule is adsorbed onto a small patch of the surface of a catalyst. It's known that the molecule is adsorbed on 1 of 36 possible sites for adsorption. Calculate the entropy of this system.
Explanation:
It is known that Boltzmann formula of entropy is as follows.
s = k ln W
where, k = Boltzmann constant
W = number of energetically equivalent possible microstates or configuration of the system
In the given case, W = 36. Now, we will put the given values into the above formula as follows.
s = k ln W
=
= 
Thus, we can conclude that the entropy of this system is
.