Explanation:
Given the mass of HCl is ---- 0.50 g
The volume of solution is --- 4.0 L
To determine the pH of the resulting solution, follow the below-shown procedure:
1. Calculate the number of moles of HCl given by using the formula:

2. Calculate the molarity of HCl.
3. Calculate pH of the solution using the formula:
![pH=-log[H^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D)
Since HCl is a strong acid, it undergoes complete ionization when dissolved in water.

Thus, ![[HCl]=[H^+]](https://tex.z-dn.net/?f=%5BHCl%5D%3D%5BH%5E%2B%5D)
Calculation:
1. Number of moles of HCl given:

2. Concentration of HCl:

3. pH of the solution:
![pH=-log[H^+]\\=-log(0.003425)\\=2.47](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D%5C%5C%3D-log%280.003425%29%5C%5C%3D2.47)
Hence, pH of the given solution is 2.47.
I am pretty sure that the statement which is true is A. a molecule having a covalent bond can be ionic. I choose this option because you usually ca see how electons of polyatomic ions are being covalenr and gain or loose ionic electrons in order to accomplish the octet.<span>
</span>Do hope you find it helpful! Regards.
0.01742919 is the answer because i worked it out
Answer:
26.981539 u
Atomic number: 13
Symbol: Al
Electron configuration: [Ne] 3s²3p¹
As the air molecules move through the valve they have friction as they hit the walls, and its this friction that causes it to heat up.