The ideal gas equation is pV = nRT
From that you can derive several equations, depending on which variables are fixed.
1) When n and T are fixed:
pV = nRT = constant
pV = constant => p1 V1 = p2 V2 => p1 / V2 = p2 / V1 ---> Boyle's Law
2) When n and V are constant:
p / T = nR/V = constant
p / T = constant => p1 / T1 = p2 / T2 ----> Gay - Lussac's Law
3) when n and p are constant
V / T = nR/p = constant
V / T = constant => V1 / T1 = V2 / T2 ---> Charles' Law
4) When only n is constant
pV / T = nR = constant
pV / T = constant => p1 V1 / T1 = p2 V2 / T2 ----> Combined gas law.
There you have the four equations that agree with the ideal gas law.
Answer:
Explanation:
Following are a few consequences of fossil fuels
1. It causes air pollution.
2. When they are burned, they produce toxic substances which leads to global warming.
3. Waste products are hazardous to public health and environment.
4. They are non - renewable and unsustainable.
5. Drilling fossil fuels is a dangerous process
Hope this helps
plz mark as brainliest!!!!
The final temperature in Celsius of the metal block is 49°C.
<h3>How to find the number of moles ?</h3>
Moles water = 
= 
= 0.0266 moles
Heat lost by water = 0.0266 mol x 44.0 kJ/mol
= 1.17 kJ
= 1170 J [1 kJ = 1000 J]
Heat lost = Heat gained
Heat gained by aluminum = 1170 J
1170 = 55 x 0.903 (T - 25) = 49.7 T - 1242
1170 + 1242 = 49.7 T
T = 48.5°C (49°C at two significant figures)
Thus from the above conclusion we can say that The final temperature in Celsius of the metal block is 49°C.
Learn more about the Moles here: brainly.com/question/15356425
#SPJ1
<span>1.61 × 1023 Multiply by 26.8 to get the answer.161.33 x 10 ^23 </span>
Answer:
[OH⁻] = 3.34x10⁻³M; Percent ionization = 0.54%; pH = 11.52
Explanation:
Kb of the reaction:
NH3 + H2O(l) ⇄ NH4+ + OH-
Is:
Kb = 1.8x10⁻⁵ = [NH₄⁺] [OH⁻] / [NH₃]
<em>As all NH₄⁺ and OH⁻ comes from the same source we can write: </em>
<em>[NH₄⁺] = [OH⁻] = X</em>
<em>And as </em>[NH₃] = 0.619M
1.8x10⁻⁵ = [X] [X] / [0.619M]
1.11x10⁻⁵ = X²
3.34x10⁻³ = X = [NH₄⁺] = [OH⁻]
<h3>[OH⁻] = 3.34x10⁻³M</h3><h3 />
% ionization:
[NH₄⁺] / [NH₃] * 100 = 3.34x10⁻³M / 0.619M * 100 = 0.54%
pH:
As pOH = -log [OH-]
pOH = 2.48
pH = 14 - pOH
<h3>pH = 11.52</h3>