Answer:
547.5g
Explanation:
To get the mass, you need moles.
moles = (molarity)(Liters)
moles = (1.230M)(4.200L) = 5.166 moles Na2CO3
Now, just use stoichiometry
molar mass of Na2CO3 = 2(mass of Na) + (mass of C) + 3(mass of O)
= 2(22.9) + 12.01 + 3(16) = 105.99g/mol
5.166moles(105.99g/mol)
= 547.544
But, the measurements given had 4 significant figures, so in chemistry we write:
547.5g
Answer:
There are 2 double bond units and 1 lone pair, which will try to get as far apart as possible - taking up a trigonal planar arrangement. Because the lone pair isn't counted when you describe the shape, SO2 is described as bent or V-shaped.
Explanation:
There are 2 double bond units and 1 lone pair, which will try to get as far apart as possible - taking up a trigonal planar arrangement. Because the lone pair isn't counted when you describe the shape, SO2 is described as bent or V-shaped.
<span>(8.90/95.211) =0.09347 moles</span>
NaOH is a strong base and complete dissociation into Na⁺ and OH⁻ ions.
Therefore [NaOH] = [OH⁻]
To calculate the [OH⁻], we can first find the pOH as NaOH is a basic solution.
pH + pOH = 14
Since pH = 11.50
pOH = 14 - 11.50
pOH = 2.50
We can calculate [OH⁻] by knowing pOH
pOH = -log[OH⁻]
[OH⁻] = antilog(-pOH)
[OH⁻] = 3.2 x 10⁻³ M
therefore [NaOH] = 3.2 x 10⁻³ M
Hi Khal75,
Experiment: How to seperate iron fillings
Iron fillings is a substance that attracts to magnets.
Answer - Separated using a magnet; magnetism
If you move a magnet around different solids with the iron fillings in it, it wil attract the iron to be able to seperate it.