C. 28 KJ
AMU of H2O2 = 2(1) + 2(16) = 34 g/mol
10 g / 34 g/mol = 0.294 mol H2O2
0.294 mol / H = 2 mol / 190 KJ
H = 28.9 KJ
Answer: 1. AgF + CaCl2 = AgCl + CaF2
2. C2H4 +O2 = CO2 +H2O
3. K2S = K+S
4. O2 + Mg = MgO
5. Mg + AlBr3 = MgBr2 + Al
6.C2H6O + O2= CO2 + H2O
7.Li2SO4 + MgCl2= Li2SO4 + MgCl2
8.HCl + Zn= H2 + ZnCl2
Explanation:
Balance the equation
Write down your given equation.
Write down the number of atoms per each element that you have on each side of the equation.
Always leave hydrogen and oxygen for last.
If you have more than one element left to balance:
Add a coefficient to the single carbon atom on the right of the equation to balance it with the 3 carbon atoms on the left of the equation.
Balance the hydrogen atoms next.
Balance the oxygen atoms.
Answer:
(3R,4R)-4-bromohexan-3-ol
Explanation:
In this case, we have reaction called <u>halohydrin formation</u>. This is a <u>markovnikov reaction</u> with <u>anti configuration</u>. Therefore the halogen in this case "Br" and the "OH" must have <u>different configurations</u>. Additionally, in this molecule both carbons have the <u>same substitution</u>, so the "OH" can go in any carbon.
Finally, in the product we will have <u>chiral carbons</u>, so we have to find the absolute configuration for each carbon. On carbon 3 we will have an "R" configuration on carbon 4 we will have also an "R" configuration. (See figure 1)
I hope it helps!