Answer:
Explanation:
The given pH = 8.55
Unknown:
[H₃O⁺] = ?
[OH⁻] = ?
In order to find these unknowns we must first establish some relationship.
pH = -log[H₃O⁺]
8.55 = -log[H₃O⁺]
[H₃O⁺] = inverse log₁₀(-8.55) = 2.82 x 10⁻⁹moldm⁻³
To find the [OH⁻],
pH + pOH = 14
pOH = 14 - pH = 14 - 8.55
pOH = 5.45
pOH = -log[OH⁻]
[OH⁻] = inverse log₁₀ (-5.45) = 3.55 x 10⁻⁶moldm⁻³
The solution is basic because it has more concentration of OH⁻ ions compared to H⁺ ions.
Answer:
The answer is 130.953 g of hydrogen gas.
Explanation:
Hydrogen gas is formed by two atoms of hydrogen (H), so its molecular formula is H₂. We can calculate is molecular weight as the product of the molar mass of H (1.008 g/mol):
Molecular weight H₂= molar mass of H x 2= 1.008 g/mol x 2= 2.01568 g
Finally, we obtain the number of mol of H₂ there is in the produced gas mass (264 g) by using the molecular weight as follows:
mass= 264 g x 1 mol H₂/2.01568 g= 130.9731703 g
The final mass rounded to 3 significant digits is 130.973 g
Answer:
i think its D
Explanation:
The law of conservation of mass or principle of mass conservation states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as the system's mass cannot change, so quantity can neither be added nor be removed.
Answer:
C.
Explanation:
A gas can expand to fill any volume and takes the shape of the container.
Answer:
Increasing temperature
Explanation:

Enthalpy of the reaction = -393.5 kJ/mol
Negative sign implies that reaction is exothermic.
Effect of change in reaction condition is explained by Le chateliers principle.
According to Le chateliers principle, if the reaction conditions of a reversible reaction in a state of dynamic equilibirum is changed, the reaction will move in a direction to counteract the change.
1. Increasing the temperature
Forward reaction is exothermic that means temperature increases in forward direction. Backward reaction will be endothermic and so there is decrease in temperature in backward direction or in left direction.
On increasing temperature, reaction will be move in direction to counteract the increased temperature, therefore reaction will move in left direction.
2. Adding O2
If O2 is added, then reaction will move in a direction in which its get consumed. So, reaction will move in forward direction or in right direction.
3. Removing C (s)
Le Chatelier's principle does not apply on solids, so removal of C(s) does not affect the equilibrium.