It would be 7 M 4 m x 2 m equals 8 M - 1 =7
Answer:
equilibrium position.
Explanation:
In simple harmonic motion , velocity v(t) is given by,
v(t) = -ω A sin(ωt + φ)
where
ω = angular velocity of the corresponding circular motion
A = amplitude
t = time
φ = the initial angle of the corresponding circular motion when the motion begin.
v (t) get maximized when sin value is maximized , i.e. sin
=1
The particle has maximum speed when it passes through the equilibrium position.
Answer:
Incomplete question
This is the complete question
For a magnetic field strength of 2 T, estimate the magnitude of the maximum force on a 1-mm-long segment of a single cylindrical nerve that has a diameter of 1.5 mm. Assume that the entire nerve carries a current due to an applied voltage of 100 mV (that of a typical action potential). The resistivity of the nerve is 0.6ohms meter
Explanation:
Given the magnetic field
B=2T
Lenght of rod is 1mm
L=1/1000=0.001m
Diameter of rod=1.5mm
d=1.5/1000=0.0015m
Radius is given as
r=d/2=0.0015/2
r=0.00075m
Area of the circle is πr²
A=π×0.00075²
A=1.77×10^-6m²
Given that the voltage applied is 100mV
V=0.1V
Given that resistive is 0.6 Ωm
We can calculate the resistance of the cylinder by using
R= ρl/A
R=0.6×0.001/1.77×10^-6
R=339.4Ω
Then the current can be calculated, using ohms law
V=iR
i=V/R
i=0.1/339.4
i=2.95×10^-4 A
i=29.5 mA
The force in a magnetic field of a wire is given as
B=μoI/2πR
Where
μo is a constant and its value is
μo=4π×10^-7 Tm/A
Then,
B=4π×10^-7×2.95×10^-4/(2π×0.00075)
B=8.43×10^-8 T
Then, the force is given as
F=iLB
Since B=2T
F=iL(2B)
F=2.95×10^-4×2×8.34×10^-8
F=4.97×10^-11N
Answer:
the correct answer is 273.2 k
There are many porperties. You can use Altitude, Temperature, Pressure and Density, but the best one is temperature. The resaon for that is that based on the temperature changes then the athmosphere can be broken into four major layers. Remember that the layers are the following: <span>the </span>troposphere,the<span> </span>stratosphere, <span>the </span>mesosphere<span>, and the</span>thermosphere<span>.</span>