Answer:
C
Explanation:
thats what i think it depends on the amount of force someone dropped the ball with.
Each electron has a charge of

In this problem, the total charge is

Therefore, the number of electrons contained in this total charge will be given by the total charge divided by the charge of a single electron:

Answer:
The Statement is wrong because the reverse is the case as it is the kinetic energy that is being transformed to gravitational potential energy.
Explanation:
As your friend throws the baseball into the air the ball gains an initial velocity (u) and this makes the Kinetic energy to be equal to

Here m is the mass of the baseball
Now as this ball moves further upward the that velocity it gained reduce due to the gravitational force and this in turn reduces the kinetic energy of the ball and this kinetic energy lost is being converted to gravitational potential energy which is mathematically represented as (m×g×h)
as energy can not be destroyed but converted to a different form according to the first law of thermodynamics
Looking a the formula for gravitational potential energy we see that the higher the ball goes the grater the gravitational potential energy.
Different densities have to have a reason - different pressure and/or humidity etc. If there is a different pressure, there is a mechanical force that preserves the pressure difference: think about the cyclones that have a lower pressure in the center. The cyclones rotate in the right direction and the cyclone may be preserved by the Coriolis force.
If the two air masses differ by humidity, the mixing will almost always lead to precipitation - which includes a phase transition for water etc. It's because the vapor from the more humid air mass gets condensed under the conditions of the other. You get some rain. In general, intense precipitation, thunderstorms, and other visible isolated weather events are linked to weather fronts.
At any rate, a mixing of two air masses is a nontrivial, violent process in general. That's why the boundary is called a "front". In the military jargon, a front is the contested frontier of a conflict. So your idea that the air masses could mix quickly and peacefully - whatever you exactly mean quantitatively - either neglects the inertia of the air, a relatively low diffusion coefficient, a low thermal conductivity, and/or high latent heat of water vapor. A front is something that didn't disappear within minutes so pretty much tautologically, there must be forces that make such a quick disappearance impossible.